Hmm, that’s a good point. Lack of cartesian products is annoying. We don’t however need the full power set axiom to get them. We can simply have an axiom that states that cartesian products exist. Or even weaker do the following (ad hoc axioms) with a new property of being Cartesian: 1. The cartesian product of any two Cartesian sets exist. 2. Any subset of R is Cartesian. 3. The cartesian product of two Cartesian sets is Cartesian. 4. If A and B are Cartesian then A union B, A intersect B, and A\B are all Cartesian. That should be enough and is a lot weaker than general power set I think.
Hmm, that’s a good point. Lack of cartesian products is annoying. We don’t however need the full power set axiom to get them. We can simply have an axiom that states that cartesian products exist. Or even weaker do the following (ad hoc axioms) with a new property of being Cartesian: 1. The cartesian product of any two Cartesian sets exist. 2. Any subset of R is Cartesian. 3. The cartesian product of two Cartesian sets is Cartesian. 4. If A and B are Cartesian then A union B, A intersect B, and A\B are all Cartesian. That should be enough and is a lot weaker than general power set I think.