You said your definition would not classify a bottle cap with water in it as an optimizer. This might be really nit-picky, but I’m not sure it’s generally true.
I say this because the water in the bottle cap could evaporate. Thus, supposing there is no rain, from a wide range of possible states of the bottle cap, it would tend towards no longer having water in it.
I know you said you make an exception for tendencies towards increased entropy being considered optimizers. However, this does not increase the entropy of the bottlecap, It could potentially increase the entropy of the water that was in the bottle cap, but this is not necessarily the case. For example, if the bottle cap is kept in a sealed container, the water vapor could potentially condense into a small puddle with the same entropy as it had in the bottle cap.
If my memory of physics is correct, water evaporating would still increases the total entropy of the total system in which the bottle cap is located, by virtue of releasing some heat into the environment . However, note that humans and robots also, merely by doing mechanical work and thus forming heat which is then dispersed into the environment, result in increased entropy of the system they’re in. So you can’t rule out any system that makes its environment tend towards increased entropy from being an optimizer, because that’s what humans and robots do, too.
That said, if you clarify that the bottle cap is not in any such contained system, I think the water would result in a higher-entropy state.
Thank you for this comment Chantiel. Yes, a container that engineered to evaporate water poured anywhere into it and condense it into a central area would be an optimizing system by my definition. That is a bit like a ball rolling down a hill, which is also an optimizing system and also has nothing resembling agency. I am
The bottle cap example was actually about putting a bottle cap onto a bottle and asking whether, since the water now stays inside the bottle, it should be considered an optimizer. I pointed out that this would not qualify as an optimizing system because if you moved a water molecule from the bottle and place it outside the bottle, the bottle cap would not act to put it back inside.
You said your definition would not classify a bottle cap with water in it as an optimizer. This might be really nit-picky, but I’m not sure it’s generally true.
I say this because the water in the bottle cap could evaporate. Thus, supposing there is no rain, from a wide range of possible states of the bottle cap, it would tend towards no longer having water in it.
I know you said you make an exception for tendencies towards increased entropy being considered optimizers. However, this does not increase the entropy of the bottlecap, It could potentially increase the entropy of the water that was in the bottle cap, but this is not necessarily the case. For example, if the bottle cap is kept in a sealed container, the water vapor could potentially condense into a small puddle with the same entropy as it had in the bottle cap.
If my memory of physics is correct, water evaporating would still increases the total entropy of the total system in which the bottle cap is located, by virtue of releasing some heat into the environment . However, note that humans and robots also, merely by doing mechanical work and thus forming heat which is then dispersed into the environment, result in increased entropy of the system they’re in. So you can’t rule out any system that makes its environment tend towards increased entropy from being an optimizer, because that’s what humans and robots do, too.
That said, if you clarify that the bottle cap is not in any such contained system, I think the water would result in a higher-entropy state.
Thank you for this comment Chantiel. Yes, a container that engineered to evaporate water poured anywhere into it and condense it into a central area would be an optimizing system by my definition. That is a bit like a ball rolling down a hill, which is also an optimizing system and also has nothing resembling agency. I am
The bottle cap example was actually about putting a bottle cap onto a bottle and asking whether, since the water now stays inside the bottle, it should be considered an optimizer. I pointed out that this would not qualify as an optimizing system because if you moved a water molecule from the bottle and place it outside the bottle, the bottle cap would not act to put it back inside.