Hmm I guess if you consider electromagnetism as part and parcel, i.e. as a general theory of fields then I would agree. Perhaps it can be considered to be nearly universally accepted if so, though in that case it seems less like a new theory and more like a refinement of existing theories. I had in mind, to what you were referring to, a more limited scope of gauge fields as they apply to the more controversial QM foundational work, though perhaps you would consider those as tenuous extensions and not gauge theory proper.
We have experiments that demonstrate something other than the CI has the most parsimonious explanation, for that experiment. That doesn’t automatically imply such theories are more parsimonious overall. But it does imply there is a possibility.
I’m still not sure if we understand each other regarding the gauge fields. Do you agree that gluons, and W and Z bosons, exist? They are described by Yang-Mills fields, i.e. a kind of gauge field. They are gauge fields with nonabelian symmetry groups, whereas a Maxwell field like the electromagnetic field is an abelian gauge field.
The explanation of nuclear forces in terms of gauge fields was certainly fundamental progress in physics. But it is not generally understood as a change in the interpretation of quantum mechanics, though it does present specific new challenges, e.g. a Bohmian gauge field would seem to require choosing a particular gauge as the ontologically correct one, in the same way that Bohmian quantum fields in general require a preferred reference frame; and in both cases this is somehow against the spirit of the symmetry in question (gauge symmetry, Lorentz symmetry).
I don’t agree that there are particular experiments where one of the ontological interpretations offers the most parsimonious explanation. In the link you gave, it’s claimed that the transactional interpretation offers a more economical explanation of the delayed choice eraser. I don’t see it. To begin with, there doesn’t seem to be any clear principle telling us how to analyze a given experiment in terms of advanced and retarded waves. It seems to be up to the interpreter to figure out a story about which waves go where. I also don’t really understand how the Born rule emerges in the transactional interpretation. (But perhaps there are principles behind both of these, and I just haven’t seen them.)
By contrast, an instrumental or phenomenal or positivist approach to quantum mechanics is quite straightforward, because empirically it just boils down to conditional probabilities connecting observed events. It’s also more flexible because it doesn’t even require wavefunctions; it’s just as valid for a different formalism, like Heisenberg’s operator algebras. The downside is that it’s not giving you an observer-independent ontology.
I didn’t just say Copenhagen interpretation, because in people’s minds, the Copenhagen interpretation is often loaded with hermeneutic ballast that I might not agree with. So all I’m saying, is that an interpretation of quantum mechanics, which focuses on observed properties and makes no ontological assertions about anything else, is the most parsimonious interpretation we have.
My view on transactional interpretation, many worlds, etc., is that they are interesting and suggestive, but they all still have deficiencies when it comes to accounting for the full range of applications of quantum mechanics.
After some reflection I would have to say that most of what you write is sensible stuff. Though the definitions are the tricky part, like most discussions of physics when they get down into the weeds.
It is clear that something akin to gluons, W, and Z bosons must exist for the most elegant explanation, otherwise ridiculous complications will need to be introduced to fit observed phenomenon. But there’s always the danger of falling into the trap of thinking of these ‘objects’ as discrete entities, which I am not entirely convinced of. And so I will refrain from using the word ‘exist’.
If you mean ‘exist’ by a discrete object with a unique position persisting across some span of space-time, I’m not entirely sure they do.
Fields, or something akin to fields, clearly do, and so do macro objects of course, but I’m not even entirely convinced that electrons ‘exist‘ in the same sense as the above. They may ‘exist’ in the sense that information ‘exists’.
There‘s also Feynman’s half-in-jest proposal of a one electron universe, which I think has a grain, or several grains, of truth. If that helps you better understand my position.
Hermeneutic ballast is an excellent term! It’s definitely a more concise way of describing its oddities.
Ontological assertions may be avoidable even if some combination of ’spooky action at a distance’, ‘hidden variables’, etc., proved to be the case, but I just don’t see how anyone could make the argument without sacrificing parsimony.
And it seems ever more likely for that to be the case in the reality we live in, given recent trends in cosmology and black hole physics.
Hmm I guess if you consider electromagnetism as part and parcel, i.e. as a general theory of fields then I would agree. Perhaps it can be considered to be nearly universally accepted if so, though in that case it seems less like a new theory and more like a refinement of existing theories. I had in mind, to what you were referring to, a more limited scope of gauge fields as they apply to the more controversial QM foundational work, though perhaps you would consider those as tenuous extensions and not gauge theory proper.
We have experiments that demonstrate something other than the CI has the most parsimonious explanation, for that experiment. That doesn’t automatically imply such theories are more parsimonious overall. But it does imply there is a possibility.
I’m still not sure if we understand each other regarding the gauge fields. Do you agree that gluons, and W and Z bosons, exist? They are described by Yang-Mills fields, i.e. a kind of gauge field. They are gauge fields with nonabelian symmetry groups, whereas a Maxwell field like the electromagnetic field is an abelian gauge field.
The explanation of nuclear forces in terms of gauge fields was certainly fundamental progress in physics. But it is not generally understood as a change in the interpretation of quantum mechanics, though it does present specific new challenges, e.g. a Bohmian gauge field would seem to require choosing a particular gauge as the ontologically correct one, in the same way that Bohmian quantum fields in general require a preferred reference frame; and in both cases this is somehow against the spirit of the symmetry in question (gauge symmetry, Lorentz symmetry).
I don’t agree that there are particular experiments where one of the ontological interpretations offers the most parsimonious explanation. In the link you gave, it’s claimed that the transactional interpretation offers a more economical explanation of the delayed choice eraser. I don’t see it. To begin with, there doesn’t seem to be any clear principle telling us how to analyze a given experiment in terms of advanced and retarded waves. It seems to be up to the interpreter to figure out a story about which waves go where. I also don’t really understand how the Born rule emerges in the transactional interpretation. (But perhaps there are principles behind both of these, and I just haven’t seen them.)
By contrast, an instrumental or phenomenal or positivist approach to quantum mechanics is quite straightforward, because empirically it just boils down to conditional probabilities connecting observed events. It’s also more flexible because it doesn’t even require wavefunctions; it’s just as valid for a different formalism, like Heisenberg’s operator algebras. The downside is that it’s not giving you an observer-independent ontology.
I didn’t just say Copenhagen interpretation, because in people’s minds, the Copenhagen interpretation is often loaded with hermeneutic ballast that I might not agree with. So all I’m saying, is that an interpretation of quantum mechanics, which focuses on observed properties and makes no ontological assertions about anything else, is the most parsimonious interpretation we have.
My view on transactional interpretation, many worlds, etc., is that they are interesting and suggestive, but they all still have deficiencies when it comes to accounting for the full range of applications of quantum mechanics.
Sorry for the late reply,
After some reflection I would have to say that most of what you write is sensible stuff. Though the definitions are the tricky part, like most discussions of physics when they get down into the weeds.
It is clear that something akin to gluons, W, and Z bosons must exist for the most elegant explanation, otherwise ridiculous complications will need to be introduced to fit observed phenomenon. But there’s always the danger of falling into the trap of thinking of these ‘objects’ as discrete entities, which I am not entirely convinced of. And so I will refrain from using the word ‘exist’.
If you mean ‘exist’ by a discrete object with a unique position persisting across some span of space-time, I’m not entirely sure they do.
Fields, or something akin to fields, clearly do, and so do macro objects of course, but I’m not even entirely convinced that electrons ‘exist‘ in the same sense as the above. They may ‘exist’ in the sense that information ‘exists’.
There‘s also Feynman’s half-in-jest proposal of a one electron universe, which I think has a grain, or several grains, of truth. If that helps you better understand my position.
Hermeneutic ballast is an excellent term! It’s definitely a more concise way of describing its oddities.
Ontological assertions may be avoidable even if some combination of ’spooky action at a distance’, ‘hidden variables’, etc., proved to be the case, but I just don’t see how anyone could make the argument without sacrificing parsimony.
And it seems ever more likely for that to be the case in the reality we live in, given recent trends in cosmology and black hole physics.