Machine intelligence has surpassed “human level” in a number of narrow domains. Already, humans can’t manipulate enough data to do anything remotely like a search engine or a stockbot can do.
The claim seems to be that in narrow domains there are often domain-specific “tricks”—that wind up not having much to do with general intelligence—e.g. see chess and go. This seems true—but narrow projects often broaden out. Search engines and stockbots really need to read and understand the web. The pressure to develop general intelligence in those domains seems pretty strong.
Those who make a big deal about the distinction between their projects and “mere” expert systems are probably mostly trying to market their projects before they are really experts at anything.
One of my videos discusses the issue of whether the path to superintelligent machines will be “broad” or “narrow”:
Machine intelligence has surpassed “human level” in a number of narrow domains. Already, humans can’t manipulate enough data to do anything remotely like a search engine or a stockbot can do.
The claim seems to be that in narrow domains there are often domain-specific “tricks”—that wind up not having much to do with general intelligence—e.g. see chess and go. This seems true—but narrow projects often broaden out. Search engines and stockbots really need to read and understand the web. The pressure to develop general intelligence in those domains seems pretty strong.
Those who make a big deal about the distinction between their projects and “mere” expert systems are probably mostly trying to market their projects before they are really experts at anything.
One of my videos discusses the issue of whether the path to superintelligent machines will be “broad” or “narrow”:
http://alife.co.uk/essays/on_general_machine_intelligence_strategies/