This doesn’t seem like a good analogy to any real-world situation. The null hypothesis (“the coin really has two tails”) predicts the exact same outcome every time, so every experiment should get a p-value of 1, unless the null-hypothesis is false, in which case someone will eventually get a p-value of 0. This is a bit of a pathological case which bears little resemblance to real statistical studies.
While the situation admittedly is oversimplified, it does seem to have the advantage that anyone can replicate it exactly at a very moderate expense (a two-headed coin will also do, with a minimum amount of caution). In that respect it may actually be more relevant to real world than any vaccine/autism study.
Indeed, every experiment should get a pretty strong p-value (though never exactly 1), but what gets reported is not the actual p but whether it is above .95 (which is an arbitrary threshold proposed once by Fisher who never intended it to play the role it plays in science currently, but merely as a rule of thumb to see if a hypothesis is worth a follow-up at all.) But even the exact p-values refer to only one possible type of error, and the probability of the other is generally not (1-p), much less (1-alpha).
This doesn’t seem like a good analogy to any real-world situation. The null hypothesis (“the coin really has two tails”) predicts the exact same outcome every time, so every experiment should get a p-value of 1, unless the null-hypothesis is false, in which case someone will eventually get a p-value of 0. This is a bit of a pathological case which bears little resemblance to real statistical studies.
While the situation admittedly is oversimplified, it does seem to have the advantage that anyone can replicate it exactly at a very moderate expense (a two-headed coin will also do, with a minimum amount of caution). In that respect it may actually be more relevant to real world than any vaccine/autism study.
Indeed, every experiment should get a pretty strong p-value (though never exactly 1), but what gets reported is not the actual p but whether it is above .95 (which is an arbitrary threshold proposed once by Fisher who never intended it to play the role it plays in science currently, but merely as a rule of thumb to see if a hypothesis is worth a follow-up at all.) But even the exact p-values refer to only one possible type of error, and the probability of the other is generally not (1-p), much less (1-alpha).