In your “critiquing bias” section you allege that 3⁄43 studies supporting a link is “still surprisingly low”. This is wrong; it is actually surprisingly high. If B ~ Binom(43, 0.05), then P(B > 2) ~= 0.36.*
*As calculated by the following Python code:
from scipy.stats import binom
b = binom(43, 0.05)
p_less_than_3 = sum(b.pmf(i) for i in [0,1,2])
print 1 - p_less_than_3
I wrote a paragraph on that in the post. I predicted a publication bias in favor of positive results, assuming the community is not biased on the particular issue of vaccines & autism. This prediction is probably wrong, but that hypothesis (lack of bias) is what I was testing.
In your “critiquing bias” section you allege that 3⁄43 studies supporting a link is “still surprisingly low”. This is wrong; it is actually surprisingly high. If B ~ Binom(43, 0.05), then P(B > 2) ~= 0.36.*
*As calculated by the following Python code:
I said “surprisingly low” because of publication & error bias.
Which way do you think publication bias on the issue goes, anyway?
I wrote a paragraph on that in the post. I predicted a publication bias in favor of positive results, assuming the community is not biased on the particular issue of vaccines & autism. This prediction is probably wrong, but that hypothesis (lack of bias) is what I was testing.