I’d be the first to agree on terminology here. I’m not suggesting that choice of the box causes money in the box, simply that those two are causally connected, in the physical sense. The whole issue seems to stem from taking the word ‘causal’ from causal decision theory, and treating it as more than mere name, bringing in enormous amounts of confused philosophy which doesn’t capture very well how physics work.
When deciding, you evaluate hypotheticals of you making different decisions. A hypothetical is like a snapshot of the world state. Laws of physics very often have to be run backwards from the known state to deduce past state, and then forwards again to deduce future state. E.g. a military robot sees a hand grenade flying into it’s field of view, it calculates motion backwards to find where it was thrown from, finding location of the grenade thrower, then uses model of grenade thrower to predict another grenade in the future.
So, you process the hypothetical where you picked up one box, to find how much money you get. You have the known state: you picked one box. You deduce that past state of deterministic you must have been Q which results in picking up one box, a copy of that state has been made, and that state resulted in prediction of 1 box. You conclude that you get 1 million. You do same for picking 2 boxes, the previous state must be R, etc, you conclude you get 1000 . You compare, and you pick the universe where you get 1 box.
(And with regards to the “smoking lesion” problem, smoking lesion postulates a blatant logical contradiction—it postulates that the lesion affects the choice, which contradicts that the choice is made by the agent we are speaking of. As a counter example to a decision theory, it is laughably stupid)
I think laughably stupid is a bit too harsh. As I understand thing, confusion regarding Newcomb’s leads to new decision theories, which in turn makes the smoking lesion problem interesting because the new decision theories introduce new, critical weaknesses in order to solve Newcomb’s problem. I do, agree, however, that the smoking lesion problem is trivial if you stick to a sensible, CDT model.
The problems with EDT are quite ordinary… its looking for good news, and also, it is kind of under-specified (e.g. some argue it’d two-box in Newcomb’s after learning physics). A decision theory can not be disqualified for giving ‘wrong’ answer in the hypothetical that 2*2=5 or in the hypothetical that a or not a = false, or in the hypothetical that the decision is simultaneously controlled by the decision theory, and set, without involvement of the decision theory, by the lesion (and a random process if correlation is imperfect).
I’d be the first to agree on terminology here. I’m not suggesting that choice of the box causes money in the box, simply that those two are causally connected, in the physical sense. The whole issue seems to stem from taking the word ‘causal’ from causal decision theory, and treating it as more than mere name, bringing in enormous amounts of confused philosophy which doesn’t capture very well how physics work.
When deciding, you evaluate hypotheticals of you making different decisions. A hypothetical is like a snapshot of the world state. Laws of physics very often have to be run backwards from the known state to deduce past state, and then forwards again to deduce future state. E.g. a military robot sees a hand grenade flying into it’s field of view, it calculates motion backwards to find where it was thrown from, finding location of the grenade thrower, then uses model of grenade thrower to predict another grenade in the future.
So, you process the hypothetical where you picked up one box, to find how much money you get. You have the known state: you picked one box. You deduce that past state of deterministic you must have been Q which results in picking up one box, a copy of that state has been made, and that state resulted in prediction of 1 box. You conclude that you get 1 million. You do same for picking 2 boxes, the previous state must be R, etc, you conclude you get 1000 . You compare, and you pick the universe where you get 1 box.
(And with regards to the “smoking lesion” problem, smoking lesion postulates a blatant logical contradiction—it postulates that the lesion affects the choice, which contradicts that the choice is made by the agent we are speaking of. As a counter example to a decision theory, it is laughably stupid)
Excellent.
I think laughably stupid is a bit too harsh. As I understand thing, confusion regarding Newcomb’s leads to new decision theories, which in turn makes the smoking lesion problem interesting because the new decision theories introduce new, critical weaknesses in order to solve Newcomb’s problem. I do, agree, however, that the smoking lesion problem is trivial if you stick to a sensible, CDT model.
The problems with EDT are quite ordinary… its looking for good news, and also, it is kind of under-specified (e.g. some argue it’d two-box in Newcomb’s after learning physics). A decision theory can not be disqualified for giving ‘wrong’ answer in the hypothetical that 2*2=5 or in the hypothetical that a or not a = false, or in the hypothetical that the decision is simultaneously controlled by the decision theory, and set, without involvement of the decision theory, by the lesion (and a random process if correlation is imperfect).