What about Fugaku the current fastest supercomputer with 1 exaflops in single or further reduced precision. What’s the cost of training a 100 trillion model with it?
The Scaling Laws for Neural Language Model’s paper says that the optimal model size scales 5x with 10x more compute. So to be more precise, using GPT-3 numbers (4000 PetaFLOPs/days for 200 billions parameters), a 100 trillion parameters model would require 4000 ExaFLOPs/days. (using GPT-3 architecture, so no sparse or linear transformer improvements). To be fair, the Scaling Law papers also predicts a breaking down of the scaling laws around 1 trillion parameters.
The peak F16 performance of Fugaku seems to be 2 exaFLOPs. If we are generous and we account for 30% peak hardware utilization in training a transformer model, the same efficiency of an optimized large GPU cluster, it would take around 6000 days (20 years).
Fugaku seems to have cost 1B$, which leads me to believe that GPUs are much better at F16 flops per $ than the ARM SVE architecture they use. In any case, even if we use GPUs, it is clear we are some years away if we don’t find a more efficient neural language model architecture.
What about Fugaku the current fastest supercomputer with 1 exaflops in single or further reduced precision. What’s the cost of training a 100 trillion model with it?
https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
The Scaling Laws for Neural Language Model’s paper says that the optimal model size scales 5x with 10x more compute. So to be more precise, using GPT-3 numbers (4000 PetaFLOPs/days for 200 billions parameters), a 100 trillion parameters model would require 4000 ExaFLOPs/days. (using GPT-3 architecture, so no sparse or linear transformer improvements). To be fair, the Scaling Law papers also predicts a breaking down of the scaling laws around 1 trillion parameters.
The peak F16 performance of Fugaku seems to be 2 exaFLOPs. If we are generous and we account for 30% peak hardware utilization in training a transformer model, the same efficiency of an optimized large GPU cluster, it would take around 6000 days (20 years).
Fugaku seems to have cost 1B$, which leads me to believe that GPUs are much better at F16 flops per $ than the ARM SVE architecture they use. In any case, even if we use GPUs, it is clear we are some years away if we don’t find a more efficient neural language model architecture.