Yeah, I think the fact that Elo only models the macrostate makes this an imperfect analogy. I think a better analogy would involve a hybrid model, which assigns a probability to a chess game based on whether each move is plausible (using a policy network), and whether the higher-rated player won.
I don’t think the distinction between near-exact and nonexact models is essential here. I bet we could introduce extra entropy into the short-term gas model and the rollout would still be superior for predicting the microstate than the Boltzmann distribution.
Yeah, I think the fact that Elo only models the macrostate makes this an imperfect analogy. I think a better analogy would involve a hybrid model, which assigns a probability to a chess game based on whether each move is plausible (using a policy network), and whether the higher-rated player won.
I don’t think the distinction between near-exact and nonexact models is essential here. I bet we could introduce extra entropy into the short-term gas model and the rollout would still be superior for predicting the microstate than the Boltzmann distribution.