If this is actually an introductory post to game theory, is this really the right approach?
If the post contains the information in question (it does) then there doesn’t seem to be a problem using ‘remember’ as a pseudo-reference from the comments section to the post itself.
The words “pure,” “simple,” and “mixed” are not meaningful to newcomers, and so Yvain’s post, which assumes that readers know the meanings of those terms with regards to game theory, is not introducing the topic as smoothly as it could. That’s what I got out of Maelin’s post.
I’ve never heard the word “simple” used in game-theoretic context either. It just seemed that word was better suited to describe a [do x] strategy than a [do x with probability p and y with probability (1-p)] strategy.
If the word “remember” is bothering you, I’ve found people tend to be more receptive to explanations if you pretend you’re reminding them of something they knew already. And the definition of a Nash equilibrium was in the main post.
If the word “remember” is bothering you, I’ve found people tend to be more receptive to explanations if you pretend you’re reminding them of something they knew already.
Agreed. Your original response was fine as an explanation to Maelin; I singled out ‘remember’ in an attempt to imply the content of my second post (to Yvain), but did so in a fashion that was probably too obscure.
If the post contains the information in question (it does) then there doesn’t seem to be a problem using ‘remember’ as a pseudo-reference from the comments section to the post itself.
The words “pure,” “simple,” and “mixed” are not meaningful to newcomers, and so Yvain’s post, which assumes that readers know the meanings of those terms with regards to game theory, is not introducing the topic as smoothly as it could. That’s what I got out of Maelin’s post.
I’ve never heard the word “simple” used in game-theoretic context either. It just seemed that word was better suited to describe a [do x] strategy than a [do x with probability p and y with probability (1-p)] strategy.
If the word “remember” is bothering you, I’ve found people tend to be more receptive to explanations if you pretend you’re reminding them of something they knew already. And the definition of a Nash equilibrium was in the main post.
Agreed. Your original response was fine as an explanation to Maelin; I singled out ‘remember’ in an attempt to imply the content of my second post (to Yvain), but did so in a fashion that was probably too obscure.