This hasn’t been my experience with kids, honestly. Nor is it my interpretation of the education literature that there’s overwhelming evidence that making science education flashy is an optimal strategy. It’s hard to do good science education while keeping the flash, and flash isn’t the most durable emotion.
Instead, I find that kids like novelty and play, and they also like to feel capable and appreciated for their knowledge. Things don’t have to be flashy to be novel and playful to children. Close observation of the world can reveal novelty to them even in things that are familiar, like the patterns on a garden spider’s back, or seeing a rainbow in water sprayed from a hose. Making a routine practice of pointing out these phenomena, asking them about it, and making exploring the world in this manner a part of your relationship is the way I would approach things.
I question whether making young kids invent falsifiable models and do controlled experiments is really the best way to kick off their science education. Science education, even in college, is far more about having them read about other people’s discoveries and observing the world closely than it is about lab work. Undergraduates rarely if ever invent their own experiments or models.
Nothing wrong with having your kids do an experiment here and there if it’s fun. But if it were my own children, I’d have them peer through telescopes, look at bugs with a magnifying glass, follow an ant to see if they can find its nest, build a Halloween costume that incorporates some home-made electronics, learn to program a computer game, help you cook a recipe that requires them to double all the proportions of the ingredients, and other things like that. I earnestly believe that the desire to analyze the world follows from a habit of observing it closely.
Yes, I agree that doing good science is hard with flash, I’ve just had everyone telling me that that’s what hooks them. Good to know that’s not really true.
I’m thinking along the lines heavily leading to/giving the model, not necessarily having them come up with it themselves and then testing it. But part of the reason I’m asking here is to see if anyone has ideas regarding models which are discoverable by kids this age so that they can get there by more of their own processes.
That’s fair! I think that’s a good idea to explore and I think it’s great to try things out. If you try something and the kids don’t take to it, no harm done :)
One thing you could try is some probability. There’s a classic intro stats demo where you have a class come up with fake sequences of 20 coin flips in a row, and generate some real sequences of 20 coin flips as well, all while the teacher is out of the room. Then the teacher comes in and guesses which are real and which are fake.
They can do that because people tend to generate fake sequences with too few stretches of repeated heads and tails.
Kids can flip a coin, they’d have fun trying to trick you, and when you guessed right, it might seem like a magic trick. You can also teach them a few things about probability and dice rolls and help them see how it applies to board games.
I like the coin flip idea. I have done something along these lines as a single session with homeschool kids where I gave them two decks of cards and had them stack the deck while I was out. When I came back I used an Excel VBA program I had made to continually reassess the maximum likelihood for the red/black proportion and updated it as I drew cards. Didn’t go quite as well as I had hoped, mostly because I didn’t emphasize that in order to get quick results they needed to really stack the deck, and they had made it 24 red, 28 black, or something similar.
Anyway, yes, I was thinking exploring probability might have some more possibilities along these lines, so I will think about that a little more. We did optical illusions today: persistence of vision, pattern juxtaposition, etc. Then we talked about how they fool system 1 thought, but you can use system 2 techniques to defeat them, did things like measuring the apparently converging lines, slowed down the thaumatrope, etc.
This hasn’t been my experience with kids, honestly. Nor is it my interpretation of the education literature that there’s overwhelming evidence that making science education flashy is an optimal strategy. It’s hard to do good science education while keeping the flash, and flash isn’t the most durable emotion.
Instead, I find that kids like novelty and play, and they also like to feel capable and appreciated for their knowledge. Things don’t have to be flashy to be novel and playful to children. Close observation of the world can reveal novelty to them even in things that are familiar, like the patterns on a garden spider’s back, or seeing a rainbow in water sprayed from a hose. Making a routine practice of pointing out these phenomena, asking them about it, and making exploring the world in this manner a part of your relationship is the way I would approach things.
I question whether making young kids invent falsifiable models and do controlled experiments is really the best way to kick off their science education. Science education, even in college, is far more about having them read about other people’s discoveries and observing the world closely than it is about lab work. Undergraduates rarely if ever invent their own experiments or models.
Nothing wrong with having your kids do an experiment here and there if it’s fun. But if it were my own children, I’d have them peer through telescopes, look at bugs with a magnifying glass, follow an ant to see if they can find its nest, build a Halloween costume that incorporates some home-made electronics, learn to program a computer game, help you cook a recipe that requires them to double all the proportions of the ingredients, and other things like that. I earnestly believe that the desire to analyze the world follows from a habit of observing it closely.
Yes, I agree that doing good science is hard with flash, I’ve just had everyone telling me that that’s what hooks them. Good to know that’s not really true.
I’m thinking along the lines heavily leading to/giving the model, not necessarily having them come up with it themselves and then testing it. But part of the reason I’m asking here is to see if anyone has ideas regarding models which are discoverable by kids this age so that they can get there by more of their own processes.
That’s fair! I think that’s a good idea to explore and I think it’s great to try things out. If you try something and the kids don’t take to it, no harm done :)
One thing you could try is some probability. There’s a classic intro stats demo where you have a class come up with fake sequences of 20 coin flips in a row, and generate some real sequences of 20 coin flips as well, all while the teacher is out of the room. Then the teacher comes in and guesses which are real and which are fake.
They can do that because people tend to generate fake sequences with too few stretches of repeated heads and tails.
Kids can flip a coin, they’d have fun trying to trick you, and when you guessed right, it might seem like a magic trick. You can also teach them a few things about probability and dice rolls and help them see how it applies to board games.
I like the coin flip idea. I have done something along these lines as a single session with homeschool kids where I gave them two decks of cards and had them stack the deck while I was out. When I came back I used an Excel VBA program I had made to continually reassess the maximum likelihood for the red/black proportion and updated it as I drew cards. Didn’t go quite as well as I had hoped, mostly because I didn’t emphasize that in order to get quick results they needed to really stack the deck, and they had made it 24 red, 28 black, or something similar.
Anyway, yes, I was thinking exploring probability might have some more possibilities along these lines, so I will think about that a little more. We did optical illusions today: persistence of vision, pattern juxtaposition, etc. Then we talked about how they fool system 1 thought, but you can use system 2 techniques to defeat them, did things like measuring the apparently converging lines, slowed down the thaumatrope, etc.