Perhaps we could have it recalculate past impacts?
Yeah, I have a sense that having the penalty be over the actual history and action versus the plan of no-ops since birth will resolve this issue.
But if its model was wrong and it does something that it now infers was bad (because we are now moving to shut it down), its model is still probably incorrect. So it seems like what we want it to do is just nothing, letting us clean up the mess.
I agree that if it infers that it did something bad because humans are now moving to shut it down, it should probably just do nothing and let us fix things up. However, it might be a while until the humans move to shut it down, if they don’t understand what’s happened. In this scenario, I think you should see the preservation of ‘errors’ in the sense of the agent’s future under no-ops differing from ‘normality’.
If ‘errors’ happen due to a mismatch between the model and reality, I agree that the agent shouldn’t try to fix them with the bits of the model that are broken. However, I just don’t think that that describes many of the things that cause ‘errors’: those can be foreseen natural events (e.g. San Andreas earthquake if you’re good at predicting earthquake), unlikely but possible natural events (e.g. San Andreas earthquake if you’re not good at predicting earthquakes), or unlikely consequences of actions. In these situations, agent mitigation still seems like the right approach to me.
Yeah, I have a sense that having the penalty be over the actual history and action versus the plan of no-ops since birth will resolve this issue.
I agree that if it infers that it did something bad because humans are now moving to shut it down, it should probably just do nothing and let us fix things up. However, it might be a while until the humans move to shut it down, if they don’t understand what’s happened. In this scenario, I think you should see the preservation of ‘errors’ in the sense of the agent’s future under no-ops differing from ‘normality’.
If ‘errors’ happen due to a mismatch between the model and reality, I agree that the agent shouldn’t try to fix them with the bits of the model that are broken. However, I just don’t think that that describes many of the things that cause ‘errors’: those can be foreseen natural events (e.g. San Andreas earthquake if you’re good at predicting earthquake), unlikely but possible natural events (e.g. San Andreas earthquake if you’re not good at predicting earthquakes), or unlikely consequences of actions. In these situations, agent mitigation still seems like the right approach to me.