Well, for values of ‘exist’ equal to “within vast particle accelerators”. You produce muons by a rather complicated process: First you send a proton beam at graphite, which produces kaons and pions. You focus these beams using magnetic fields, and they decay to muons. Muons are relatively long-lived, so you guide them into a circular storage ring. They decay to a muon neutrino, an electron anti-neutrino, and an electron.
I’m not sure whether accuracy is a good question in these circumstances. Our control of the muons is good enough to manipulate them as described above, and we’re talking centimeter distances at quite good approximations to lightspeed, but it’s not as though we care about the ones that miss, except to note that you don’t go into the tunnel when the beam is active.
You do get quite a lot of other particles, but they don’t have the right mass and momentum combinations for the magnets to guide them exactly into the ring, so they end up slightly increasing the radiation around the production apparatus.
The above is for the Gran Sasso experiment; there may be other specific paths to muon beams, but the general method of starting with protons, electrons, or some other easily accessible particle and focusing the products of collisions is general. Of course this means you can’t get anywhere near the luminosity of the primary beams, since there’s a huge loss at each conversion-and-focusing.
Well, for values of ‘exist’ equal to “within vast particle accelerators”. You produce muons by a rather complicated process: First you send a proton beam at graphite, which produces kaons and pions. You focus these beams using magnetic fields, and they decay to muons. Muons are relatively long-lived, so you guide them into a circular storage ring. They decay to a muon neutrino, an electron anti-neutrino, and an electron.
I’m not sure whether accuracy is a good question in these circumstances. Our control of the muons is good enough to manipulate them as described above, and we’re talking centimeter distances at quite good approximations to lightspeed, but it’s not as though we care about the ones that miss, except to note that you don’t go into the tunnel when the beam is active.
You do get quite a lot of other particles, but they don’t have the right mass and momentum combinations for the magnets to guide them exactly into the ring, so they end up slightly increasing the radiation around the production apparatus.
The above is for the Gran Sasso experiment; there may be other specific paths to muon beams, but the general method of starting with protons, electrons, or some other easily accessible particle and focusing the products of collisions is general. Of course this means you can’t get anywhere near the luminosity of the primary beams, since there’s a huge loss at each conversion-and-focusing.