Do superconductors actually have really, trully, honest-to-Omega zero resistance, or is it just low enough that we can ignore it over really long time frames?
It’s for-real zero. (Source: conference La supraconductivité dans tous ses états, Palaiseau, 2011) Take a superconductive loop with a current in it and measure its resistance with a precise ohmeter. You’ll find zero, which tells you that the resistance must be less than the absolute error on the ohmeter. This tells you that an electron encounters a resistive obstacle at most every few ten kilometers or so. But the loop is much smaller than that, so there can’t be any obstacles in it.
It’s for-real zero. (Source: conference La supraconductivité dans tous ses états, Palaiseau, 2011)
Man, that is so weird. I live in Palaiseau—assuming you’re talking about the one near Paris—and I lived there in 2011, and I had no idea about that conference. I don’t even know where in Palaiseau it could have taken place...
It’s for-real zero. (Source: conference La supraconductivité dans tous ses états, Palaiseau, 2011) Take a superconductive loop with a current in it and measure its resistance with a precise ohmeter. You’ll find zero, which tells you that the resistance must be less than the absolute error on the ohmeter. This tells you that an electron encounters a resistive obstacle at most every few ten kilometers or so. But the loop is much smaller than that, so there can’t be any obstacles in it.
Man, that is so weird. I live in Palaiseau—assuming you’re talking about the one near Paris—and I lived there in 2011, and I had no idea about that conference. I don’t even know where in Palaiseau it could have taken place...
That one talk was at Supoptique. There were things at Polytechnique too, and I think some down in Orsay.