Ah, now I see your point. I had this misconception that if you send a billiard ball into a huge brick-wall of billiard balls, it will bounce back. Okay, I don’t have a design.
if you send a billiard ball into a huge brick-wall of billiard balls, it will bounce back.
It sure will, after imparting some momentum to the wall. My point is that I do not know how to construct a gate out of components interacting only through repulsive forces. I am not saying that it is impossible, I just do not see how it can be done.
How much momentum will it lose before it bounces back? If a large enough wall can make this arbitrarily small, then I think the Fredkin and Toffoli billiard gates can be built out of a thick wall of billiard balls. Lucky thing, in this model there is no friction, so gates can be arbitrarily large. Sure, the system might start to misbehave after the walls move by epsilon, but this doesn’t seem like a serious problem. In the worst case, we can use throw-away gates that are abandoned after one use. That model is still as strong as Boolean circuits.
Ah, now I see your point. I had this misconception that if you send a billiard ball into a huge brick-wall of billiard balls, it will bounce back. Okay, I don’t have a design.
It sure will, after imparting some momentum to the wall. My point is that I do not know how to construct a gate out of components interacting only through repulsive forces. I am not saying that it is impossible, I just do not see how it can be done.
How much momentum will it lose before it bounces back? If a large enough wall can make this arbitrarily small, then I think the Fredkin and Toffoli billiard gates can be built out of a thick wall of billiard balls. Lucky thing, in this model there is no friction, so gates can be arbitrarily large. Sure, the system might start to misbehave after the walls move by epsilon, but this doesn’t seem like a serious problem. In the worst case, we can use throw-away gates that are abandoned after one use. That model is still as strong as Boolean circuits.