That is a very good explanation for the workings of time, thank you very much for that.
But it doesn’t answer my real question. I’ll try to be a bit more clear.
Light is always observed at the same speed. I don’t think I’m so crazy that I imagined reading this all over the place on the internet. The explanation given for this is that the faster I go, the more I slow down through time, so from my reference frame, light decelerates (or accelerates? I’m not sure, but it actually doesn’t matter for my question, so if I’m wrong, just switch them around mentally as you read).
So let’s say I’m going in a direction, let’s call it “forward”. If a ball is going “backward”, then from my frame of reference, the ball would appear to go faster than it really is going, because its relative speed = its speed—my speed. This is also true for light, though the deceleration of time apparently counters that effect by making me observe it slower by the precise amount to make it still go at the same speed.
Now take this example again, but instead send the ball forward like me. From my frame of reference, the ball is going slower than it is in reality, again because its relative speed = its speed—my speed. The same would apply to light, but because time has slowed for me, so has the light from my perspective. But wait a second. Something isn’t right here. If light has slowed down from my point of view because of the equation “relative speed = its speed—my speed”, and time slowing down has also slowed it, then it should appear to be going slower than the speed of light. But it is in fact going precisely at the speed of light! This is a contradiction between the theory as I understand it and reality.
My god, that is probably extremely unclear. The number of times I use the words speed and time and synonyms… I wish I could use visual aids.
Also, I just thought of this, but how does light move through time if it’s going at the speed of light? That would give it a velocity of zero in the futureward direction (given the explanation you have linked to), which would be very peculiar.
The explanation given for this is that the faster I go, the more I slow down through time, so from my reference frame, light decelerates (or accelerates? I’m not sure, but it actually doesn’t matter for my question, so if I’m wrong, just switch them around mentally as you read).
Perhaps I’m reading this wrong, but it seems you’re assuming that time slowing down is an absolute, not a relative, effect. Do you think there is an absolute fact of the matter about how fast you’re moving? If you do, then this is a big mistake. You only have a velocity relative to some reference frame.
If you don’t think of velocity as absolute, what do you mean by statements like this one:
The same would apply to light, but because time has slowed for me, so has the light from my perspective.
There is no absolute fact of the matter about whether time has slowed for you. This is only true from certain perspectives. Crucially, it is not true from your own perspective. From your perspective, time always moves faster for you than it does for someone moving relative to you.
Maybe this angle will help: “relative speed = its speed—my speed” is an approximate equation. The true one is relative speed = (its speed—my speed)/(1-its speed * my speed / c^2). Let one of the two speeds = c, and the relative speed is also c.
Thanks for your answer, this equation will make it easier to explain my problem.
Let’s say a ball is going at the speed of c/4, and I’m going at a speed of c/2. According to the approximate equation, before the effects of time slowing down are taken into account, I would be going at a speed of -c/4. Now if you take into account time slowing down (divide -c/4 by the (1-its speed*...)), you get a speed of −2c/7.
So that was the example when I’m going in the same direction as the ball. Now let’s say the ball is still going at a speed of c/4, but I’m now going at a speed of -c/2. Using the approximate equation: 3c/4. Add in time slowing down: 2c/3.
So the two pairs are (-c/4, −2c/7) and (3c/4,2c/3). Let’s compare these values.
For the first tuple, when I’m going in the same direction as the ball, -c/4 > −2c/7. This means that −2c/7 is a faster speed in the negative direction (multiply both sides by −1 and you get c/4<2c/7), so from the c/2 reference frame, after the time slow effect, the observed speed of the ball is greater than it would be without the time slow down. So far so good.
For the second tuple, however, when I’m going in the opposite direction of the ball, 3c/4 > 2c/3. So from the -c/2 reference frame, after the time slow effect, the ball appears to be going slower than it would if time didn’t slow down.
But didn’t the first tuple show that the ball is supposed to appear to go faster given the time slow effect? Does this mean that time slows down when I’m going in the same direction as the ball, and it accelerates when I’m going in the opposite direction of the ball? Or does it mean that the modification of the approximate equation which gives the correct one is not in fact the effects of time slowing down? Or am I off my rocker here?
This might be just a confusion between speed and velocity. In one case relative velocity (not speed), in fractions of the speed of light, is −1/4 (classically) vs −2/7 (relativity). In the other case it is 3⁄4 vs 2⁄3. In both cases the classical value is higher than the relativistic value.
That the classical value is always higher than the time-slowed value is precisely what doesn’t make sense to me.
If −1/4 is the classical value, and −2/7 is the relativity value, −2/7 is a faster speed than −1/4, even though −1/4 is a bigger number. So the relativity speed is faster. However, if 3⁄4 is the classical value, and 2⁄3 is the relativity value, 3⁄4 is a faster speed relative to me than 2⁄3. So in this case, the classical speed is faster.
So when I have a speed of 1⁄2, time slowing down makes the relative speed of the ball greater. And when I have a speed of −1/2, time slowing down makes the relative speed of the ball smaller. More generally, this can be described by my direction relative to the ball. If I’m moving in the same direction as the ball, time slowing down makes it appear to go faster than the classical speed. However, if I’m going in the opposite direction of the ball, then it appears to go slower than the classical speed. And that doesn’t make sense. Time slowing down should always make the ball appear to go faster than the classical speed, and the effects of time slowing down should definitely should not depend on my direction relative to the ball.
If light has slowed down from my point of view because of the equation “relative speed = its speed—my speed”, and time slowing down has also slowed it, then it should appear to be going slower than the speed of light.
When your subjective time slows down, things around you seem to move faster relative to you, not slower. So your time slowing down would make the light seem to speed up for you.
Also, I just thought of this, but how does light move through time if it’s going at the speed of light? That would give it a velocity of zero in the futureward direction (given the explanation you have linked to), which would be very peculiar.
That’s right. From the point of view of the photon it is created and destroyed in the same instant.
To add to that, it is a relatively common classroom experiment to show trails in gas left by muons from cosmic radiation. These muons are travelling at about 99.94% of the speed of light, which is quite fast but the distance from the upper atmosphere where they originate to the classroom is long enough that it takes the muon several of its half-lives to reach the clasroom—by our measurement of time, at least. We should expect them to have decayed before the reach the classroom, but they don’t!
By doing the same experiment at multiple elevations we can see that the rate of muon decay is much lower than non-relativistic theories would suggest. However, if time dilation due to their large speed is taken into account then we get that the muons ‘experience’ a much shorter trip from their point of view—sufficiently short that they don’t decay! That they have reached the classroom is evidence (given a bunch of other knowledge about decay and formation of muons) that is easily observed for time dilation.
Also! Time dilation is surprisingly easy to derive. I recommend that you attempt to derive it yourself if you haven’t already! I give you this starting point: A) The speed of light is constant and independent of observers B) A simple way to analyze time is to consider a very simple clock: two mirrors facing towards each other with a photon bouncing back and forth between the two. The cycles of the photon denotes the passage of time. C) What if the clock is moving? D) Draw a diagram
Okay, but if it’s not moving through time, it only exists in the point in time in which it was created, no? So it would only be present for one moment in time where it would move constantly until it’s destruction. We would therefore observe it as moving at infinite speed.
Remember the thing from the Reddit comment about everything always moving at the constant speed c. The photon has its velocity at a 90° angle from the time axis of space-time, but that’s still just a velocity of magnitude c. Can’t get infinite velocity because of the rule that you can’t change your time-space speed ever.
Things get a bit confusing here, since the photon is not moving through time at all in its own frame of reference, but in the frame of reference of an outside observer, it’s zipping around at speed c. Your intuition seems to be not including the bit about time working differently in different frames of reference.
Sorry if I’m being annoying, but the light is not moving through time. So it should not appear at different points in time. If I’m not moving forward, and you are, and you’re looking directly to your side, then you’ll only see me while I’m next to you. And if I start moving from side to side, then I won’t impact you unless you’re right next to me. Change “forward” with “futureward” and “side” to “space”, and you get my problem with light having zero futureward speed.
My big assumption here is that even though things appear to behave differently from different frames of reference, there is in fact an absolute truth, an absolute way things are behaving. I don’t think that’s wrong, but if it is, I’ve got a long way to go before understanding relativity.
[...] but the light is not moving through time. So it should not appear at different points in time [...]
Since it’s not moving through time, light moves only through space. It never appears at different points in time. You can “see” this quite easily if you notice that you can’t encounter the same photon twice, even if you would have something that could detect its passing without changing it, unless you alter its path with mirrors or curved space, because you’d need to go faster than light to catch up with it after it passes you the first time.
In fact, if memory serves, in relativity two events are defined to be instantaneous if they are connected by a photon. For example, if a photon from your watch hits your eye and tells you it’s exactly 5 PM, and another photon hits your eye at the same time and tells you an atom decayed, then technically the atom decayed at exactly 5 PM. That is, in relativity, events happen exactly when you see them. On the other hand, the fact that two events are simultaneous for me may or may not (and usually aren’t) simultaneous for someone else, hence the word relativity.
(Even if you curve the photon, that just means that you pass twice through the same point in time. Think about it, if the photon can leave you and go back, it means you can see your “past you”, photons reflected off of your body into space and then coming back. Say the “loop” is three light-hours long. Since you can see the watch of the past you show 1PM at the same time you see your watch show 4PM, you simply conclude that the two events are simultaneous, from your point of view.)
I think what’s confusing is that we’re very often told things like “that star is N light years away, so since we’re seeing it now turning into a supernova, it happened N years ago”. That’s not quite a meaningless claim, but “ago” and “away” don’t quite mean the same thing they mean in relativistic equations. In relativity terms, for me it happened in 2012 because the events “I notice that the calendar shows 2012” and “the star blew up” are simultaneous from my point of view.
I don’t have good offhand ideas how to unpack this further, sorry. I’d have to go learn Minkowski spacetime diagrams or something to have a proper idea how you get from timeward-perpendicular spaceward movement into the 45 degree light cone edge, and probably wouldn’t end up with a very comprehensible explanation.
That is a very good explanation for the workings of time, thank you very much for that.
But it doesn’t answer my real question. I’ll try to be a bit more clear.
Light is always observed at the same speed. I don’t think I’m so crazy that I imagined reading this all over the place on the internet. The explanation given for this is that the faster I go, the more I slow down through time, so from my reference frame, light decelerates (or accelerates? I’m not sure, but it actually doesn’t matter for my question, so if I’m wrong, just switch them around mentally as you read).
So let’s say I’m going in a direction, let’s call it “forward”. If a ball is going “backward”, then from my frame of reference, the ball would appear to go faster than it really is going, because its relative speed = its speed—my speed. This is also true for light, though the deceleration of time apparently counters that effect by making me observe it slower by the precise amount to make it still go at the same speed.
Now take this example again, but instead send the ball forward like me. From my frame of reference, the ball is going slower than it is in reality, again because its relative speed = its speed—my speed. The same would apply to light, but because time has slowed for me, so has the light from my perspective. But wait a second. Something isn’t right here. If light has slowed down from my point of view because of the equation “relative speed = its speed—my speed”, and time slowing down has also slowed it, then it should appear to be going slower than the speed of light. But it is in fact going precisely at the speed of light! This is a contradiction between the theory as I understand it and reality.
My god, that is probably extremely unclear. The number of times I use the words speed and time and synonyms… I wish I could use visual aids.
Also, I just thought of this, but how does light move through time if it’s going at the speed of light? That would give it a velocity of zero in the futureward direction (given the explanation you have linked to), which would be very peculiar.
Anyway, thanks for your time.
Perhaps I’m reading this wrong, but it seems you’re assuming that time slowing down is an absolute, not a relative, effect. Do you think there is an absolute fact of the matter about how fast you’re moving? If you do, then this is a big mistake. You only have a velocity relative to some reference frame.
If you don’t think of velocity as absolute, what do you mean by statements like this one:
There is no absolute fact of the matter about whether time has slowed for you. This is only true from certain perspectives. Crucially, it is not true from your own perspective. From your perspective, time always moves faster for you than it does for someone moving relative to you.
I really encourage you to read the first few chapters of this: http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/index.html
It is simply written and should clear up some of your confusions.
Maybe this angle will help: “relative speed = its speed—my speed” is an approximate equation. The true one is relative speed = (its speed—my speed)/(1-its speed * my speed / c^2). Let one of the two speeds = c, and the relative speed is also c.
Thanks for your answer, this equation will make it easier to explain my problem.
Let’s say a ball is going at the speed of c/4, and I’m going at a speed of c/2. According to the approximate equation, before the effects of time slowing down are taken into account, I would be going at a speed of -c/4. Now if you take into account time slowing down (divide -c/4 by the (1-its speed*...)), you get a speed of −2c/7.
So that was the example when I’m going in the same direction as the ball. Now let’s say the ball is still going at a speed of c/4, but I’m now going at a speed of -c/2. Using the approximate equation: 3c/4. Add in time slowing down: 2c/3.
So the two pairs are (-c/4, −2c/7) and (3c/4,2c/3). Let’s compare these values.
For the first tuple, when I’m going in the same direction as the ball, -c/4 > −2c/7. This means that −2c/7 is a faster speed in the negative direction (multiply both sides by −1 and you get c/4<2c/7), so from the c/2 reference frame, after the time slow effect, the observed speed of the ball is greater than it would be without the time slow down. So far so good.
For the second tuple, however, when I’m going in the opposite direction of the ball, 3c/4 > 2c/3. So from the -c/2 reference frame, after the time slow effect, the ball appears to be going slower than it would if time didn’t slow down.
But didn’t the first tuple show that the ball is supposed to appear to go faster given the time slow effect? Does this mean that time slows down when I’m going in the same direction as the ball, and it accelerates when I’m going in the opposite direction of the ball? Or does it mean that the modification of the approximate equation which gives the correct one is not in fact the effects of time slowing down? Or am I off my rocker here?
This might be just a confusion between speed and velocity. In one case relative velocity (not speed), in fractions of the speed of light, is −1/4 (classically) vs −2/7 (relativity). In the other case it is 3⁄4 vs 2⁄3. In both cases the classical value is higher than the relativistic value.
That the classical value is always higher than the time-slowed value is precisely what doesn’t make sense to me.
If −1/4 is the classical value, and −2/7 is the relativity value, −2/7 is a faster speed than −1/4, even though −1/4 is a bigger number. So the relativity speed is faster. However, if 3⁄4 is the classical value, and 2⁄3 is the relativity value, 3⁄4 is a faster speed relative to me than 2⁄3. So in this case, the classical speed is faster.
So when I have a speed of 1⁄2, time slowing down makes the relative speed of the ball greater. And when I have a speed of −1/2, time slowing down makes the relative speed of the ball smaller. More generally, this can be described by my direction relative to the ball. If I’m moving in the same direction as the ball, time slowing down makes it appear to go faster than the classical speed. However, if I’m going in the opposite direction of the ball, then it appears to go slower than the classical speed. And that doesn’t make sense. Time slowing down should always make the ball appear to go faster than the classical speed, and the effects of time slowing down should definitely should not depend on my direction relative to the ball.
When your subjective time slows down, things around you seem to move faster relative to you, not slower. So your time slowing down would make the light seem to speed up for you.
That’s right. From the point of view of the photon it is created and destroyed in the same instant.
To add to that, it is a relatively common classroom experiment to show trails in gas left by muons from cosmic radiation. These muons are travelling at about 99.94% of the speed of light, which is quite fast but the distance from the upper atmosphere where they originate to the classroom is long enough that it takes the muon several of its half-lives to reach the clasroom—by our measurement of time, at least. We should expect them to have decayed before the reach the classroom, but they don’t!
By doing the same experiment at multiple elevations we can see that the rate of muon decay is much lower than non-relativistic theories would suggest. However, if time dilation due to their large speed is taken into account then we get that the muons ‘experience’ a much shorter trip from their point of view—sufficiently short that they don’t decay! That they have reached the classroom is evidence (given a bunch of other knowledge about decay and formation of muons) that is easily observed for time dilation.
Also! Time dilation is surprisingly easy to derive. I recommend that you attempt to derive it yourself if you haven’t already! I give you this starting point:
A) The speed of light is constant and independent of observers
B) A simple way to analyze time is to consider a very simple clock: two mirrors facing towards each other with a photon bouncing back and forth between the two. The cycles of the photon denotes the passage of time.
C) What if the clock is moving?
D) Draw a diagram
Okay, but if it’s not moving through time, it only exists in the point in time in which it was created, no? So it would only be present for one moment in time where it would move constantly until it’s destruction. We would therefore observe it as moving at infinite speed.
Remember the thing from the Reddit comment about everything always moving at the constant speed c. The photon has its velocity at a 90° angle from the time axis of space-time, but that’s still just a velocity of magnitude c. Can’t get infinite velocity because of the rule that you can’t change your time-space speed ever.
Things get a bit confusing here, since the photon is not moving through time at all in its own frame of reference, but in the frame of reference of an outside observer, it’s zipping around at speed c. Your intuition seems to be not including the bit about time working differently in different frames of reference.
Sorry if I’m being annoying, but the light is not moving through time. So it should not appear at different points in time. If I’m not moving forward, and you are, and you’re looking directly to your side, then you’ll only see me while I’m next to you. And if I start moving from side to side, then I won’t impact you unless you’re right next to me. Change “forward” with “futureward” and “side” to “space”, and you get my problem with light having zero futureward speed.
My big assumption here is that even though things appear to behave differently from different frames of reference, there is in fact an absolute truth, an absolute way things are behaving. I don’t think that’s wrong, but if it is, I’ve got a long way to go before understanding relativity.
Since it’s not moving through time, light moves only through space. It never appears at different points in time. You can “see” this quite easily if you notice that you can’t encounter the same photon twice, even if you would have something that could detect its passing without changing it, unless you alter its path with mirrors or curved space, because you’d need to go faster than light to catch up with it after it passes you the first time.
In fact, if memory serves, in relativity two events are defined to be instantaneous if they are connected by a photon. For example, if a photon from your watch hits your eye and tells you it’s exactly 5 PM, and another photon hits your eye at the same time and tells you an atom decayed, then technically the atom decayed at exactly 5 PM. That is, in relativity, events happen exactly when you see them. On the other hand, the fact that two events are simultaneous for me may or may not (and usually aren’t) simultaneous for someone else, hence the word relativity.
(Even if you curve the photon, that just means that you pass twice through the same point in time. Think about it, if the photon can leave you and go back, it means you can see your “past you”, photons reflected off of your body into space and then coming back. Say the “loop” is three light-hours long. Since you can see the watch of the past you show 1PM at the same time you see your watch show 4PM, you simply conclude that the two events are simultaneous, from your point of view.)
I think what’s confusing is that we’re very often told things like “that star is N light years away, so since we’re seeing it now turning into a supernova, it happened N years ago”. That’s not quite a meaningless claim, but “ago” and “away” don’t quite mean the same thing they mean in relativistic equations. In relativity terms, for me it happened in 2012 because the events “I notice that the calendar shows 2012” and “the star blew up” are simultaneous from my point of view.
I don’t have good offhand ideas how to unpack this further, sorry. I’d have to go learn Minkowski spacetime diagrams or something to have a proper idea how you get from timeward-perpendicular spaceward movement into the 45 degree light cone edge, and probably wouldn’t end up with a very comprehensible explanation.