What exactly does “recapitulating evolution” mean? If you mean simulating our laws of physics in an initial state that is as big as the actual world and includes, say, a perfect simulation of bacteria, and then letting the simulation evolve for the equivalent of billions of years until some parts of the environment implement general intelligence, then sure, that would be enough, but also that’s way way more compute than the evolution anchor (and also we don’t have the knowledge to set up the initial state right). (You could even then be worried about anthropic arguments saying that this won’t work.)
If you instead mean that we have some simulated environment that we hope resembles the ancestral environment, and we put in simulated animal bodies with a neural network to control them, and then train those neural networks with current gradient descent or evolutionary algorithms, I would not then and do not now think that such an approach is clearly going to produce TAI given evolutionary anchor levels of compute.
What exactly does “recapitulating evolution” mean? If you mean simulating our laws of physics in an initial state that is as big as the actual world and includes, say, a perfect simulation of bacteria, and then letting the simulation evolve for the equivalent of billions of years until some parts of the environment implement general intelligence, then sure, that would be enough, but also that’s way way more compute than the evolution anchor (and also we don’t have the knowledge to set up the initial state right). (You could even then be worried about anthropic arguments saying that this won’t work.)
If you instead mean that we have some simulated environment that we hope resembles the ancestral environment, and we put in simulated animal bodies with a neural network to control them, and then train those neural networks with current gradient descent or evolutionary algorithms, I would not then and do not now think that such an approach is clearly going to produce TAI given evolutionary anchor levels of compute.