You could still be doing perfect bayesian reasoning regardless of your prior credences. Bayesian reasoning (at least as I’ve seen the term used) is agnostic about the prior, so there’s nothing defective about assigned a low prior to programs with high time-complexity.
This is true in the abstract, but the physical word seems to be such that difficult computations are done for free in the physical substrate (e.g,. when you throw a ball, this seems to happen instantaneously, rather than having to wait for a lengthy derivation of the path it traces). This suggests a correct bias in favor of low-complexity theories regardless of their computational cost, at least in physics.
You could still be doing perfect bayesian reasoning regardless of your prior credences. Bayesian reasoning (at least as I’ve seen the term used) is agnostic about the prior, so there’s nothing defective about assigned a low prior to programs with high time-complexity.
This is true in the abstract, but the physical word seems to be such that difficult computations are done for free in the physical substrate (e.g,. when you throw a ball, this seems to happen instantaneously, rather than having to wait for a lengthy derivation of the path it traces). This suggests a correct bias in favor of low-complexity theories regardless of their computational cost, at least in physics.