I’m fairly confident now the Landuaer Tile model is correct (based in part on how closely it predicts the spherical capacitance based wire energy in this comment).
It is fundamental because every time the carrier particles transmit information to the next wire segment, they also inadvertently and unavoidably exchange some information with the outside environment, thus leaking some energy (waste heat) and or introducing some noise. The easiest way to avoid this is to increase the distance carrier particles transmit a bit before interactions—as in optical communication with photons that can travel fairly large distances before interacting with anything (in free space that distance can be almost arbitrarily large, whereas in a fiber optic cable it is only a number of OOM larger than the electron wavelength). But that is basically impossible for dense on-chip interconnect. So the only other option there is fully reversible circuits+interconnects.
So I predict none of those solutions you mention will escape the Landauer bound for dense on-chip interconnect, unless they somehow involve reversible circuits. Low voltage doesn’t change anything (the brain uses near minimal voltages close to the Landauer limit but still is bound by the Landauer wire energy), NEMS mechanical switches can’t possibly escape the bound, and optical communication has a more generous bound but is too large as mentioned.
I’m fairly confident now the Landuaer Tile model is correct (based in part on how closely it predicts the spherical capacitance based wire energy in this comment).
It is fundamental because every time the carrier particles transmit information to the next wire segment, they also inadvertently and unavoidably exchange some information with the outside environment, thus leaking some energy (waste heat) and or introducing some noise. The easiest way to avoid this is to increase the distance carrier particles transmit a bit before interactions—as in optical communication with photons that can travel fairly large distances before interacting with anything (in free space that distance can be almost arbitrarily large, whereas in a fiber optic cable it is only a number of OOM larger than the electron wavelength). But that is basically impossible for dense on-chip interconnect. So the only other option there is fully reversible circuits+interconnects.
So I predict none of those solutions you mention will escape the Landauer bound for dense on-chip interconnect, unless they somehow involve reversible circuits. Low voltage doesn’t change anything (the brain uses near minimal voltages close to the Landauer limit but still is bound by the Landauer wire energy), NEMS mechanical switches can’t possibly escape the bound, and optical communication has a more generous bound but is too large as mentioned.