Wiseman: How does the experimental evidence favor MW over a possible collapse function with non-GR-violating non-locality?
Because, at the subatomic level, no “collapse” is ever seen. At the subatomic level, there is always a distributed amplitude of position and momentum throughout all space, and it evolves deterministicly. When a photon hits a half-silvered mirror, it both gets reflected and also gets transmitted at the same time. That’s basically what a “multiple world” is.
If you just put a detector in the paths, you’ll never realize that the multiple worlds exist. You’ll only either (apparently) detect a reflection or a transmission. You’ll never detect both. But there’s no question that the single photon is both transmitted and reflected.
How can you tell? By recombining the paths, causing constructive and destructive interference between “identical” particles and/or configurations.
At the subatomic level, these “multiple worlds” do exist.
At the macroscopic level, decoherence says “the exact same thing is happening to the humans; nothing different”. But notice that even in the subatomic realm, you can’t notice the multiple worlds until you recombine paths with identical configurations. The “problem” is that, in the macroscopic world, you never get identical configurations, so you never see constructive and destructive interference from the “multiple worlds”.
MW in subatomic experiments really shouldn’t be controversial. You just follow the equations. Evolve the waveform. There is always superposition between multiple outcomes. Collapse never happens. Surely you realize the theory/model for the subatomic quantum case?
The MW “interpretation” merely says that nothing changes in the macroscopic case. It’s exactly the same as the quantum case. (Remaining to be explained: the Born probabilities.)
Wiseman: How does the experimental evidence favor MW over a possible collapse function with non-GR-violating non-locality?
Because, at the subatomic level, no “collapse” is ever seen. At the subatomic level, there is always a distributed amplitude of position and momentum throughout all space, and it evolves deterministicly. When a photon hits a half-silvered mirror, it both gets reflected and also gets transmitted at the same time. That’s basically what a “multiple world” is.
If you just put a detector in the paths, you’ll never realize that the multiple worlds exist. You’ll only either (apparently) detect a reflection or a transmission. You’ll never detect both. But there’s no question that the single photon is both transmitted and reflected.
How can you tell? By recombining the paths, causing constructive and destructive interference between “identical” particles and/or configurations.
At the subatomic level, these “multiple worlds” do exist.
At the macroscopic level, decoherence says “the exact same thing is happening to the humans; nothing different”. But notice that even in the subatomic realm, you can’t notice the multiple worlds until you recombine paths with identical configurations. The “problem” is that, in the macroscopic world, you never get identical configurations, so you never see constructive and destructive interference from the “multiple worlds”.
MW in subatomic experiments really shouldn’t be controversial. You just follow the equations. Evolve the waveform. There is always superposition between multiple outcomes. Collapse never happens. Surely you realize the theory/model for the subatomic quantum case?
The MW “interpretation” merely says that nothing changes in the macroscopic case. It’s exactly the same as the quantum case. (Remaining to be explained: the Born probabilities.)