Ok, after thinking a bit, I just can’t resist throwing in another relevant point.
Attention.
Attention in the brain is entirely inhibitory (activation magnitude reduction) of the cortical areas currently judged to be irrelevant. This inhibition is not absolute, it can be overcome by a sufficiently strong surprising signal. When it isn’t being overridden, it drives the learning rate to basically zero for the unattended areas. This has been most studied (for convenience reasons) in the visual cortex, in the context of suppressing visual information currently deemed irrelevant to the tasks at hand. These tasks at hand involve both semi-hardwired instincts like predator or prey detection, and also conditional task-specific attention as mediated by the frontal cortex (with information passed via those precious long-range connections, many of which route through the thalamus).
Ok, after thinking a bit, I just can’t resist throwing in another relevant point.
Attention.
Attention in the brain is entirely inhibitory (activation magnitude reduction) of the cortical areas currently judged to be irrelevant. This inhibition is not absolute, it can be overcome by a sufficiently strong surprising signal. When it isn’t being overridden, it drives the learning rate to basically zero for the unattended areas. This has been most studied (for convenience reasons) in the visual cortex, in the context of suppressing visual information currently deemed irrelevant to the tasks at hand. These tasks at hand involve both semi-hardwired instincts like predator or prey detection, and also conditional task-specific attention as mediated by the frontal cortex (with information passed via those precious long-range connections, many of which route through the thalamus).