I’d heard that mentioned before around these parts, but I didn’t recall it because I don’t really understand it. I think I must be making a false assumption, because I’m thinking of lexicographic ordering as the ordering of words in a dictionary, and the function that maps words to their ordinal position in the list ought to qualify. Maybe the assumption I’m missing is a countably infinite alphabet? English lacks that.
Lexicographic preferences (lexicographical order based on the order of amount of each good) describe comparative preferences where an economic agent infinitely prefers one good (X) to another (Y). Thus if offered several bundles of goods, the agent will choose the bundle that offers the most X, no matter how much Y there is. Only when there is a tie of Xs between bundles will the agent start comparing Ys.
Lexicographic preferences (lexicographical order based on the order of amount of each good) describe comparative preferences where an economic agent) infinitely prefers one good (X) to another (Y). Thus if offered several bundles of goods, the agent will choose the bundle that offers the most X, no matter how much Y there is. Only when there is a tie of Xs between bundles will the agent start comparing Ys.
(Obviously, one could have lexicographic preferences over more than two goods.)
I’d heard that mentioned before around these parts, but I didn’t recall it because I don’t really understand it. I think I must be making a false assumption, because I’m thinking of lexicographic ordering as the ordering of words in a dictionary, and the function that maps words to their ordinal position in the list ought to qualify. Maybe the assumption I’m missing is a countably infinite alphabet? English lacks that.
The wikipedia entry on lexicographic preferences isn’t great, but gives the basic flavour:
That entry says,
So my intuition above was not correct—an uncountably infinite alphabet is what’s required.
The wikipedia entry on lexicographic preferences isn’t great, but gives the basic flavour:
(Obviously, one could have lexicographic preferences over more than two goods.)