By “good” I mean (as always) “fitting the available observations and producing accurate predictions”. In the OP’s case of the 98,765th digit of π, the model is that “A randomly picked digit is uniformly distributed” and it is a “good” (i.e. accurate) one.
There’s a puzzle about how probability theory would apply would apply to something that’s basically determinate, but the question of how randomly selected digits of pi are distributed isn’t it, because the process of picking a digit randomly bring indeterminacy in.
People pose the problem with a specific digit to make the problem determinate, and focus on the paradoxical aspect.
The paradox only arises if you ignore the view I’ve been presenting. The 98,765th digit of π is a random digit in the same way that a 98,765th reading of rand() is. Until you do some work to measure it, it’s not determined.
It is determined in the sense of having only one possible value. The same applies to a call to rand() ,so long as it is a deterministic PRNG. We don’t know what the answer is , until we have done some work, in either case, but that doesn’t mean anything indeterministic is going on. Determinism is defined in terms of inevitability, ie. lack of possible alternatives. We do not regard the future as undeterminedjust because it has not happened yet.
Determinism is defined in terms of inevitability, ie. lack of possible alternatives. We do not regard the future as undetermined just because it has not happened yet.
I don’t argue with that, in fact, the statement above makes my point: there is no difference between an as-yet-unknown to you (but predetermined) digit of pi and anything else that is not yet known to you, like the way a coin lands when you flip it.
It doens’t make your point, since I don’t agree with it.
Given any degree of realism, you can differentiate between determined but unknown things and undetermined things.
Well, you’re an anti realist. But that doesn’t give you the right to interpret what other people, if there are any other people, are saying in anti-realist terms.
By “good” I mean (as always) “fitting the available observations and producing accurate predictions”. In the OP’s case of the 98,765th digit of π, the model is that “A randomly picked digit is uniformly distributed” and it is a “good” (i.e. accurate) one.
..isn’t a random digit, it’s the 98,765th digit.
There’s a puzzle about how probability theory would apply would apply to something that’s basically determinate, but the question of how randomly selected digits of pi are distributed isn’t it, because the process of picking a digit randomly bring indeterminacy in.
People pose the problem with a specific digit to make the problem determinate, and focus on the paradoxical aspect.
The paradox only arises if you ignore the view I’ve been presenting. The 98,765th digit of π is a random digit in the same way that a 98,765th reading of rand() is. Until you do some work to measure it, it’s not determined.
It is determined in the sense of having only one possible value. The same applies to a call to rand() ,so long as it is a deterministic PRNG. We don’t know what the answer is , until we have done some work, in either case, but that doesn’t mean anything indeterministic is going on. Determinism is defined in terms of inevitability, ie. lack of possible alternatives. We do not regard the future as undeterminedjust because it has not happened yet.
I don’t argue with that, in fact, the statement above makes my point: there is no difference between an as-yet-unknown to you (but predetermined) digit of pi and anything else that is not yet known to you, like the way a coin lands when you flip it.
It doens’t make your point, since I don’t agree with it.
Given any degree of realism, you can differentiate between determined but unknown things and undetermined things.
Well, you’re an anti realist. But that doesn’t give you the right to interpret what other people, if there are any other people, are saying in anti-realist terms.
Right, never mind, for a moment what your discourse style is. Disengaging.