I’m not sure I agree with this distinction between science and engineering.
Theories are a kind of product. They’re akin to an algorithm, machine, or process. They allow you to rapidly do a form of useful work: to predict experimental outcomes, design tools and interventions, and explain observed phenomena. An experiment is like a prototype. It’s just a way of testing your ideas out in the real world. Just like a prototype, sometimes it takes many attempts to get an experiment to work convincingly (either to support or falsify), because there are so many details in the execution.
A scientist who studies scotopic vision in the Elephant Hawk Moth, Deilephila elpenor, is striving to build an accurate model of moth vision. This is not fundamentally different from an engineer who’s designing night vision goggles or a pharmaceutical company researcher trying to develop a drug to improve night vision in people with an eye disorder. It’s just a different kind of product—a conceptual, predictive product, rather than a tool or a drug. Their moth vision model doesn’t have to work perfectly, either: just well enough to achieve statistical significance.
An engineer and a scientist may both be dissatisfied with imprecision when something important is at stake. If fuel efficiency doesn’t matter because gas is cheap and global warming is unknown, then figuring out how to double gas mileage doesn’t matter. But if we’re trying to sell an electric car, it’s not enough to build one that drives. It needs to go fast, far, be quick to fuel, and cheap to make. That might require investigating the fundamentals of battery technology.
Insofar as there’s a difference between science and engineering, it’s that scientists are making products you can’t easily sell. Engineers are making business products. But scientists are still engineers in the sense that they’re trying to build theories and explanations and concepts that they can “sell” to their research community.
In light of this, I might rename Elizabeth’s three categories “trivia,” “practice,” and “innovation.” Innovation builds on practice, and practice builds on trivia. Each has some key outcomes. Trivia lets you regurgitate facts and explanations. Practice lets you achieve a reliable, useful result using known tools and methods. Innovation lets you create something new, whether it’s a theory, prediction, tool, or process.
I’m not sure I agree with this distinction between science and engineering.
Theories are a kind of product. They’re akin to an algorithm, machine, or process. They allow you to rapidly do a form of useful work: to predict experimental outcomes, design tools and interventions, and explain observed phenomena. An experiment is like a prototype. It’s just a way of testing your ideas out in the real world. Just like a prototype, sometimes it takes many attempts to get an experiment to work convincingly (either to support or falsify), because there are so many details in the execution.
A scientist who studies scotopic vision in the Elephant Hawk Moth, Deilephila elpenor, is striving to build an accurate model of moth vision. This is not fundamentally different from an engineer who’s designing night vision goggles or a pharmaceutical company researcher trying to develop a drug to improve night vision in people with an eye disorder. It’s just a different kind of product—a conceptual, predictive product, rather than a tool or a drug. Their moth vision model doesn’t have to work perfectly, either: just well enough to achieve statistical significance.
An engineer and a scientist may both be dissatisfied with imprecision when something important is at stake. If fuel efficiency doesn’t matter because gas is cheap and global warming is unknown, then figuring out how to double gas mileage doesn’t matter. But if we’re trying to sell an electric car, it’s not enough to build one that drives. It needs to go fast, far, be quick to fuel, and cheap to make. That might require investigating the fundamentals of battery technology.
Insofar as there’s a difference between science and engineering, it’s that scientists are making products you can’t easily sell. Engineers are making business products. But scientists are still engineers in the sense that they’re trying to build theories and explanations and concepts that they can “sell” to their research community.
In light of this, I might rename Elizabeth’s three categories “trivia,” “practice,” and “innovation.” Innovation builds on practice, and practice builds on trivia. Each has some key outcomes. Trivia lets you regurgitate facts and explanations. Practice lets you achieve a reliable, useful result using known tools and methods. Innovation lets you create something new, whether it’s a theory, prediction, tool, or process.