It’s not the mass, it’s the viscosity. The higher density would result in a ‘firmer’ feel, since less immersion would be needed for the same amount of buoyant force.
A more reasonable option might be Gallium-which would be firm on initial contact, but then liquefy.
No, really, it’s both. I edited out out viscosity since either would be sufficient and I happened to be certain about mass but merely confident about viscosity.
I assume that the primary mechanism by which mass absorbs impact would be inertia.
Malleable is a property that liquids don’t have, so what did you mean by ‘maintaining malleable fluidity’ that doesn’t also result from having the liquid in a closed container with some airspace and some elasticity? How would more inertia help absorb impact (spread the impulse out over a longer period of time)?
It’s not the mass, it’s the viscosity. The higher density would result in a ‘firmer’ feel, since less immersion would be needed for the same amount of buoyant force.
A more reasonable option might be Gallium-which would be firm on initial contact, but then liquefy.
No, really, it’s both. I edited out out viscosity since either would be sufficient and I happened to be certain about mass but merely confident about viscosity.
I assume that the primary mechanism by which mass absorbs impact would be inertia.
Malleable is a property that liquids don’t have, so what did you mean by ‘maintaining malleable fluidity’ that doesn’t also result from having the liquid in a closed container with some airspace and some elasticity? How would more inertia help absorb impact (spread the impulse out over a longer period of time)?