Not all eukaryotes employ sexual reproduction. Also prokaryotes do have some mechanisms for DNA exchange as well, so copying errors are not their only chance for evolution either.
But I do agree that it’s probably no coincidence that the most complex life forms are sexually reproducing eukaryotes.
I’m pretty sure that I read (in Nick Lane’s The Vital Question) that all eukaryotes employ sexual reproduction at least sometimes. It’s true that they might reproduce asexually for a bunch of generations between sexual reproduction events. (It’s possible that other people disagree with Nick Lane on this, I dunno.)
I see that someone strongly-disagreed with me on this. But are there any eukyrotes that cannot reproduce sexually (and are not very-recently-decended from sexual-reproducers) but still maintain size or complexity levels commonly associated with eukyrotes?
Indeed (as other commenters also pointed out) the ability to sexually reproduce seems to be much more prevalent than I originally thought when writing the above comment. (I thought that eukaryotes only capable of asexual reproduction were relatively common, but it seems that there may only be a very few special cases like that.)
I still disagree with you dismissing the importance of mitochondria though. (I don’t think the OP is saying that mitochondria alone are sufficient for larger genomes, but the argument for why they are at least necessary is convincing to me.)
Not all eukaryotes employ sexual reproduction. Also prokaryotes do have some mechanisms for DNA exchange as well, so copying errors are not their only chance for evolution either.
But I do agree that it’s probably no coincidence that the most complex life forms are sexually reproducing eukaryotes.
I’m pretty sure that I read (in Nick Lane’s The Vital Question) that all eukaryotes employ sexual reproduction at least sometimes. It’s true that they might reproduce asexually for a bunch of generations between sexual reproduction events. (It’s possible that other people disagree with Nick Lane on this, I dunno.)
All Eukaryotes Are Sexual, unless Proven Otherwise says maybe with enough hard work you can find some Malassezia fungi that are asexual, but also the title is pretty clear.
I see that someone strongly-disagreed with me on this. But are there any eukyrotes that cannot reproduce sexually (and are not very-recently-decended from sexual-reproducers) but still maintain size or complexity levels commonly associated with eukyrotes?
Indeed (as other commenters also pointed out) the ability to sexually reproduce seems to be much more prevalent than I originally thought when writing the above comment. (I thought that eukaryotes only capable of asexual reproduction were relatively common, but it seems that there may only be a very few special cases like that.)
I still disagree with you dismissing the importance of mitochondria though. (I don’t think the OP is saying that mitochondria alone are sufficient for larger genomes, but the argument for why they are at least necessary is convincing to me.)