The example was chess, where brute-forcing leads to perfect play given sufficient ressources
I’m somewhat curious as to whether perfect play leads to a draw or a win (probably to white although if it turned out black should win that’d be an awesome finding!) I know tic-tac-toe and checkers are both a draw and I’m guessing chess will be a stalemate too but I don’t know for sure even whether we’ll ever be able to prove that one way or the other.
Discussion of chess AI a few weeks ago also got me thinking: The current trend is for the best AIs to beat the best human grandmasters even with progressively greater disadvantages. Even up to ’two moves and a pawn” or somesuch thing. My prediction:
As chess playing humans and AIs develop the AIs will be able to beat the humans with greater probability with progressively more significant handicaps. But given sufficient time this difference would peak and then actually decrease. Not because of anything to do with humans ‘catching up’. Rather, because if perfect play of a given handicap results in a stalemate or loss then even an exponentially increasing difference in ability will not be sufficient in preventing the weaker player from becoming better at forcing the expected ‘perfect’ result.
(Pardon the below tangent...)
I’m somewhat curious as to whether perfect play leads to a draw or a win (probably to white although if it turned out black should win that’d be an awesome finding!) I know tic-tac-toe and checkers are both a draw and I’m guessing chess will be a stalemate too but I don’t know for sure even whether we’ll ever be able to prove that one way or the other.
Discussion of chess AI a few weeks ago also got me thinking: The current trend is for the best AIs to beat the best human grandmasters even with progressively greater disadvantages. Even up to ’two moves and a pawn” or somesuch thing. My prediction:
As chess playing humans and AIs develop the AIs will be able to beat the humans with greater probability with progressively more significant handicaps. But given sufficient time this difference would peak and then actually decrease. Not because of anything to do with humans ‘catching up’. Rather, because if perfect play of a given handicap results in a stalemate or loss then even an exponentially increasing difference in ability will not be sufficient in preventing the weaker player from becoming better at forcing the expected ‘perfect’ result.