A very insightful explanation. It leads me to think what this implies for the replication of nanobots:
If all nanodevices produced are precise molecular copies, and moreover, any mistakes on the assembly line are not heritable because the offspring got a digital copy of the original encrypted instructions for use in making grandchildren, then your nanodevices ain’t gonna be doin’ much evolving.
You’d still have to worry about prions—self-replicating assembly errors apart from the encrypted instructions, where a robot arm fails to grab a carbon atom that is used in assembling a homologue of itself, and this causes the offspring’s robot arm to likewise fail to grab a carbon atom, etc., even with all the encrypted instructions remaining constant.
So is prion evolution just sliding from fixed point to fixed point? If so, how likely is it to happen and how would one go about suppressing process? How would one reduce the density of fixed points?
Yes, prion evolution is sliding between fixed points, One way to reduce fixed points would be to measure and test the finished duplicate, and destroy it if it fails the tests. Without tests, you just need A to build A, and A’ to build A’. No prion can reside exclusively in the testing mechanisms, so either the difference between A and A’ is something that the tests can’t measure, or A’ builds A’ and also T’, a tester that has a prion making A’ pass the tests. This is a much more stringent set of conditions, so there are less prions. Of course, a self reproducing program is always a fixed point. You can’t stop those (nanomachines that self reproduce without looking at your instructions) from being possible, just avoid making them.
A very insightful explanation. It leads me to think what this implies for the replication of nanobots:
So is prion evolution just sliding from fixed point to fixed point? If so, how likely is it to happen and how would one go about suppressing process? How would one reduce the density of fixed points?
Yes, prion evolution is sliding between fixed points, One way to reduce fixed points would be to measure and test the finished duplicate, and destroy it if it fails the tests. Without tests, you just need A to build A, and A’ to build A’. No prion can reside exclusively in the testing mechanisms, so either the difference between A and A’ is something that the tests can’t measure, or A’ builds A’ and also T’, a tester that has a prion making A’ pass the tests. This is a much more stringent set of conditions, so there are less prions. Of course, a self reproducing program is always a fixed point. You can’t stop those (nanomachines that self reproduce without looking at your instructions) from being possible, just avoid making them.