I don’t think we’re talking in different frameworks really, I think my choice of words was just dumb/misinformed/sloppy/incorrect. If I had originally stated “randomness and simplicity are opposites” and then pointed out that randomness is a type of noise, (I think it is perhaps even the average of all possible noisy biases, because all biases should cancel?) would that have been a reasonable argument, judged in your paradigm?
In a modeling framework (and we started in the context of neural nets which are models) “noise” is generally interpreted as model residuals—the part of data that you are unwilling or unable to model. In the same context “simplicity” usually means that the model has few parameters and an uncomplicated structure. As you can see, they are not opposites at all.
In the information/entropy framework simplicity usually means low Kolmogorov complexity and I am not sure what would “noise” mean.
When you say “randomness is a type of noise”, can you define the terms you are using?
Randomness is maximally complex, in the sense that a true random output cannot easily be predicted or efficiently be described. Simplicity is minimally complex, in that a simple process is easy to describe and its output easy to predict. Sometimes, part of the complexity of a complex explanation will be the result of “exploited” randomness. Randomness cannot be exploited for long, however. After all, it’s not randomness if it is predictable. Thus a neural net might overfit its data only to fail at out of sample predictions, or a human brain might see faces in the clouds. If we want to avoid this, we should favor simple explanations over complex explanations, all else being equal. Simplicity’s advantage is that it minimizes our vulnerability to random noise.
The reason that complexity is more vulnerable to random noise is that complexity involves more pieces of explanation and consequently is more flexible and sensitive to random changes in input, while simplicity uses large important concepts. In this, we can see that the fact complex explanations are easier to use than simple explanations when rationalizing failed theories is not a mere accident of human psychology, it emerges naturally from the general superiority of simple explanations.
I am not sure this is a useful way to look at things. Randomness can be very different. All random variables are random in some way, but calling all of them “maximally complex” isn’t going to get you anywhere.
Outside of quantum physics, I don’t know what is “a true random output”. Let’s take a common example: stock prices. Are they truly random? According to which definition of true randomness? Are they random to a superhuman AI?
it’s not randomness if it is predictable
Let’s take a random variable ~N(0,1), that, normally distributed with the mean of zero and the standard deviation of 1. Is it predictable? Sure. Predictability is not binary, anyway.
we should favor simple explanations over complex explanations
That’s just Occam’s Razor, isn’t it?
Simplicity’s advantage is that it minimizes our vulnerability to random noise.
How do you know what is random before trying to model it? Usually simplicity doesn’t minimize your vulnerability, it just accepts it. It is quite possible for the explanation to be too simple in which case you treat as noise (as so are vulnerable to it) things which you could have modeled by adding some complexity.
complexity … is more flexible and sensitive to random changes in input
I don’t know about that. This is more a function of your modeling structure and the whole modeling process. To give a trivial example, specifying additional limits and boundary conditions adds complexity to a model, but reduces its flexibility and sensitivity to noise.
general superiority of simple explanations
That’s a meaningless expression until you specify how simple. As I mentioned, it’s clearly possible for explanations and models to be too simple.
After giving myself some time to think about this, I think you are right and my argument was flawed. On the other hand, I still think there’s a sense in which simplicity in explanations is superior to complexity, even though I can’t produce any good arguments for that idea.
After a couple months more thought, I still feel as though there should be some more general sense in which simplicity is better. Maybe because it’s easier to find simple explanations that approximately match complex truths than to find complex explanations that approximately match simple truths, so even when you’re dealing with a domain filled with complex phenomena it’s better to use simplicity. On the other hand, perhaps the notion that approximations matter or can be meaningfully compared across domains of different complexity is begging the question somehow.
I don’t think we’re talking in different frameworks really, I think my choice of words was just dumb/misinformed/sloppy/incorrect. If I had originally stated “randomness and simplicity are opposites” and then pointed out that randomness is a type of noise, (I think it is perhaps even the average of all possible noisy biases, because all biases should cancel?) would that have been a reasonable argument, judged in your paradigm?
We still need to figure out the framework.
In a modeling framework (and we started in the context of neural nets which are models) “noise” is generally interpreted as model residuals—the part of data that you are unwilling or unable to model. In the same context “simplicity” usually means that the model has few parameters and an uncomplicated structure. As you can see, they are not opposites at all.
In the information/entropy framework simplicity usually means low Kolmogorov complexity and I am not sure what would “noise” mean.
When you say “randomness is a type of noise”, can you define the terms you are using?
Let me start over.
Randomness is maximally complex, in the sense that a true random output cannot easily be predicted or efficiently be described. Simplicity is minimally complex, in that a simple process is easy to describe and its output easy to predict. Sometimes, part of the complexity of a complex explanation will be the result of “exploited” randomness. Randomness cannot be exploited for long, however. After all, it’s not randomness if it is predictable. Thus a neural net might overfit its data only to fail at out of sample predictions, or a human brain might see faces in the clouds. If we want to avoid this, we should favor simple explanations over complex explanations, all else being equal. Simplicity’s advantage is that it minimizes our vulnerability to random noise.
The reason that complexity is more vulnerable to random noise is that complexity involves more pieces of explanation and consequently is more flexible and sensitive to random changes in input, while simplicity uses large important concepts. In this, we can see that the fact complex explanations are easier to use than simple explanations when rationalizing failed theories is not a mere accident of human psychology, it emerges naturally from the general superiority of simple explanations.
I am not sure this is a useful way to look at things. Randomness can be very different. All random variables are random in some way, but calling all of them “maximally complex” isn’t going to get you anywhere.
Outside of quantum physics, I don’t know what is “a true random output”. Let’s take a common example: stock prices. Are they truly random? According to which definition of true randomness? Are they random to a superhuman AI?
Let’s take a random variable ~N(0,1), that, normally distributed with the mean of zero and the standard deviation of 1. Is it predictable? Sure. Predictability is not binary, anyway.
That’s just Occam’s Razor, isn’t it?
How do you know what is random before trying to model it? Usually simplicity doesn’t minimize your vulnerability, it just accepts it. It is quite possible for the explanation to be too simple in which case you treat as noise (as so are vulnerable to it) things which you could have modeled by adding some complexity.
I don’t know about that. This is more a function of your modeling structure and the whole modeling process. To give a trivial example, specifying additional limits and boundary conditions adds complexity to a model, but reduces its flexibility and sensitivity to noise.
That’s a meaningless expression until you specify how simple. As I mentioned, it’s clearly possible for explanations and models to be too simple.
After giving myself some time to think about this, I think you are right and my argument was flawed. On the other hand, I still think there’s a sense in which simplicity in explanations is superior to complexity, even though I can’t produce any good arguments for that idea.
I would probably argue that the complexity of explanations should match the complexity of the phenomenon you’re trying to describe.
After a couple months more thought, I still feel as though there should be some more general sense in which simplicity is better. Maybe because it’s easier to find simple explanations that approximately match complex truths than to find complex explanations that approximately match simple truths, so even when you’re dealing with a domain filled with complex phenomena it’s better to use simplicity. On the other hand, perhaps the notion that approximations matter or can be meaningfully compared across domains of different complexity is begging the question somehow.
I was editing my comment at the time you replied, you presumably will want to replace this comment with a different one.