A hardware random number generator isn’t part of an algorithm, it’s an input to an algorithm. You can’t argue that your model is algorithmically simpler by replacing part of the algorithm with a new input.
So, should quantum mechanics be modified by removing the randomness from it?
Now, having a two level spin system in state ( |0> + |1> ) /sqrt[2], QM says that the result of measurement is random and so we’ll find the particle in state |1> with probability 1⁄2.
A modified QM would say, that the first measurement reveals 1, the second (after recreating the original initial state, of course) 1, the third 0, etc., with sequence 110010010110100010101010010101011110010101...
I understand that you say that the second version of quantum mechanics would be simpler, and disagree.
A hardware random number generator isn’t part of an algorithm, it’s an input to an algorithm. You can’t argue that your model is algorithmically simpler by replacing part of the algorithm with a new input.
So, should quantum mechanics be modified by removing the randomness from it?
Now, having a two level spin system in state ( |0> + |1> ) /sqrt[2], QM says that the result of measurement is random and so we’ll find the particle in state |1> with probability 1⁄2.
A modified QM would say, that the first measurement reveals 1, the second (after recreating the original initial state, of course) 1, the third 0, etc., with sequence 110010010110100010101010010101011110010101...
I understand that you say that the second version of quantum mechanics would be simpler, and disagree.