They mustn’t. All should be smooth just like those Einstein’s train. No resulting breaking force is postulated.
The force is due to chemical bonds. They pull particles back together as their distance increases. These chemical bonds are an example of electromagnetism, which is governed by Maxwell’s laws, which are conserved by Lorentz transformation.
Granted, whether a field is electric or magnetic depends on your point of reference. A still electron only produces an electric field, but a moving one produces a magnetic field as well. But if you perform the appropriate transformations, you will find that looking at a system that obeys Maxwell’s laws from a different point of reference will result in a system that obeys Maxwell’s laws.
In fact, Lorentz contraction was conjectured based on Maxwell’s laws before there was any experimental evidence of it. Both of those occurred before Einstein formulated special relativity.
But everything boils down to the “a microscope which enlarges the angles”
Lorentz transformation does not preserve angles Euclidean distance or angles. It preserves something called proper distance.
How it would look like?
This is what Lorentz transformation on 1+1-dimensional spacetime looks like: https://en.wikipedia.org/wiki/Lorentz_transformation#mediaviewer/File:Lorentz_transform_of_world_line.gif. There’s one dimension of space, and one of time. Each dot on the image represents an event, with a position and a time. Their movement corresponds to the changing point of reference of the observer. The slope of the diagonal lines is the speed of light, which is preserved under Lorentz transformation.
Here’s my question for you: with all of the effort put into researching special relativity, if Lorentz transformation did not preserve the laws of physics, don’t you think someone would have noticed?
But no, those ships are just like those French TGV’s. A whole composition of cars and you can’t say where one ends and another begins.
It’s like a snake, eating its tail!
Then they stretch. Or break.
Or they stay the same but the radius of the train as measured by the observer in the centre will shrink.
They mustn’t. All should be smooth just like those Einstein’s train. No resulting breaking force is postulated.
But everything boils down to the “a microscope which enlarges the angles”
How do you then see two perpendicular intersecting lines under that microscope?
Can’t be.
This Lorentz contraction has the same fundamental problem. How it would look like?
The force is due to chemical bonds. They pull particles back together as their distance increases. These chemical bonds are an example of electromagnetism, which is governed by Maxwell’s laws, which are conserved by Lorentz transformation.
Granted, whether a field is electric or magnetic depends on your point of reference. A still electron only produces an electric field, but a moving one produces a magnetic field as well. But if you perform the appropriate transformations, you will find that looking at a system that obeys Maxwell’s laws from a different point of reference will result in a system that obeys Maxwell’s laws.
In fact, Lorentz contraction was conjectured based on Maxwell’s laws before there was any experimental evidence of it. Both of those occurred before Einstein formulated special relativity.
Lorentz transformation does not preserve angles Euclidean distance or angles. It preserves something called proper distance.
This is what Lorentz transformation on 1+1-dimensional spacetime looks like: https://en.wikipedia.org/wiki/Lorentz_transformation#mediaviewer/File:Lorentz_transform_of_world_line.gif. There’s one dimension of space, and one of time. Each dot on the image represents an event, with a position and a time. Their movement corresponds to the changing point of reference of the observer. The slope of the diagonal lines is the speed of light, which is preserved under Lorentz transformation.
Here’s my question for you: with all of the effort put into researching special relativity, if Lorentz transformation did not preserve the laws of physics, don’t you think someone would have noticed?
Then how are you accelerating them up to c/2?
With a tiny force of 1 micro Newton per kilogram of mass over several million years.
This was the acceleration force.
The centrifugal force is much less.
This is the force that will serve as the breaking force.