Actually from the point of view of the ladder the universe still repeats at every ten feet.
No, it does not. I think I messed up before and it’s actually 20 feet and 8.8 nanoseconds. From the the point of view of the garage, the coordinates (0 ft, 0 ns) and (10 ft, 0 ns) correspond to the same event. From the point of view of the ladder, the coordinates became (0 ft, 0 ns) and (20 ft, 8.8 ns). They still have to be the same event.
The universe is definitely repeating itself to be off by a certain time, and the distance it is off by is not ten feet.
The ladder sees the carage length contract. That is less than 10 feet. The ladder doesn’t see itself contract that puts the limit on the repeating of the universe.
Are you sure the ladder point equivalences are not (0 ft, 0ns) and (20 ft, −8.8ns)?
No, it does not. I think I messed up before and it’s actually 20 feet and 8.8 nanoseconds. From the the point of view of the garage, the coordinates (0 ft, 0 ns) and (10 ft, 0 ns) correspond to the same event. From the point of view of the ladder, the coordinates became (0 ft, 0 ns) and (20 ft, 8.8 ns). They still have to be the same event.
The universe is definitely repeating itself to be off by a certain time, and the distance it is off by is not ten feet.
The ladder sees the carage length contract. That is less than 10 feet. The ladder doesn’t see itself contract that puts the limit on the repeating of the universe.
Are you sure the ladder point equivalences are not (0 ft, 0ns) and (20 ft, −8.8ns)?
It depends on which direction it’s moving. I didn’t bother to check the sign.
Thinking about it now, if it’s going in the positive direction, then it should be (20 ft, −8.8ns). You are correct.