To get direct verification of length contraction we’d need to take something big enough to measure and accelerate it to a substantial fraction of the speed of light. Taking the fact that we don’t have such direct verification as a problem with relativity is exactly like the creationist ploy of claiming that failure to (say) repeat the transition from water-dwelling to land-dwelling life in a lab is a problem with evolutionary biology.
We have. The packet of protons inside LHC, Geneva.
Packets all around the circular tube. Nobody says, they shrink. They say those packets don’t qualify for the contraction as they are “not rigid in Born’s sens” and therefore not shrinking.
If we can measure even a tinny mass gain, we could measure a tinny contraction.
If you read the whole article instead of quote-mining it for damning-looking sentences, you will see that that’s incorrect.
They modelled, performed experiments, and compared the results. That’s how science works. The fact that the article also mentions what happens in the models beyond the experimentally-accessible regime doesn’t change that.
Every rigid body is just a cloud of particles. If they are bonded together, they are bonded together with other particles like photons. Or gravity. Or strong nuclear force, as quarks in protons and neutrons.
Also the strong nuclear force is responsible for bounding atomic nucleus together. The force just doesn’t stop at the “edge of a proton”.
But why do you think they “must be bonded together” in the first place?
To get direct verification of length contraction we’d need to take something big enough to measure and accelerate it to a substantial fraction of the speed of light. Taking the fact that we don’t have such direct verification as a problem with relativity is exactly like the creationist ploy of claiming that failure to (say) repeat the transition from water-dwelling to land-dwelling life in a lab is a problem with evolutionary biology.
We have. The packet of protons inside LHC, Geneva.
Packets all around the circular tube. Nobody says, they shrink. They say those packets don’t qualify for the contraction as they are “not rigid in Born’s sens” and therefore not shrinking.
If we can measure even a tinny mass gain, we could measure a tinny contraction.
Had there been any.
Funny you should mention that.
See? It’s only calculation based on Relativity, not actual experimental data.
If you read the whole article instead of quote-mining it for damning-looking sentences, you will see that that’s incorrect.
They modelled, performed experiments, and compared the results. That’s how science works. The fact that the article also mentions what happens in the models beyond the experimentally-accessible regime doesn’t change that.
A bunch of particles not bound to each other by anything is not rigid in any reasonable sense I can think of, so what’s your point?
Every rigid body is just a cloud of particles. If they are bonded together, they are bonded together with other particles like photons. Or gravity. Or strong nuclear force, as quarks in protons and neutrons.
Also the strong nuclear force is responsible for bounding atomic nucleus together. The force just doesn’t stop at the “edge of a proton”.
But why do you think they “must be bonded together” in the first place?