Sebastian_Hagen: Specifying a language with all the data already specified as one of the symbols doesn’t help, because with the MML standard, you’d have to include that, AND the data you’re explaining, which makes it longer than any theory that can find regularity.
William_Tanksley: The fact that K-complexity isn’t computable doesn’t matter for determining which scientific theory is superior; you only need to know the maximum K-complexity across all known algorithms. Then, if our theories are equally good at predicting, but your max. K-complexity is longer, we don’t throw up our arms and say, “hey, I guess I can’t prove mine is better”; rather, we see that with the current state of knowledge mine is best. If at a later point you discover an algorithm that can generate your data and theory with less code, THEN yours becomes better—but to do that, you had to find a regularity we didn’t see before! which itself advances our knowledge!
Sebastian_Hagen: Specifying a language with all the data already specified as one of the symbols doesn’t help, because with the MML standard, you’d have to include that, AND the data you’re explaining, which makes it longer than any theory that can find regularity.
William_Tanksley: The fact that K-complexity isn’t computable doesn’t matter for determining which scientific theory is superior; you only need to know the maximum K-complexity across all known algorithms. Then, if our theories are equally good at predicting, but your max. K-complexity is longer, we don’t throw up our arms and say, “hey, I guess I can’t prove mine is better”; rather, we see that with the current state of knowledge mine is best. If at a later point you discover an algorithm that can generate your data and theory with less code, THEN yours becomes better—but to do that, you had to find a regularity we didn’t see before! which itself advances our knowledge!