This post suggests a (and, quite possibly, the) way to select outcome in bargaining (fully deterministic multi-player game).
ROSE values replace Competition-Cooperation ones by having players not compete against each other in attempts to extract more utility but average their payoffs over possible initiative orders. A probable social consequence is noted, that people wouldn’t threaten everyone else in order to get something they want but would rather maximize own utility (improve their situation themselves).
ROSE values are resistant to unconditional threats. Unfortunately, conditional ones can’t be easily distinguished from conditional bonuses (if player B decides to pay A if A chooses some action from a certain set) so counteracting that requires further research. There are at least two more important directions of research: non-deterministic and imperfect-information games.
In comments, a problem is mentioned: what happens if there are multiple ROSE equilibrium points? I don’t believe solution “bargain over those points only” will work, as it’s possible all of those points will remain equilibriums when calculating ROSE values again. Hopefully, this players disagreement will involve only tiny slices of utility and not matter much overall.
This post suggests a (and, quite possibly, the) way to select outcome in bargaining (fully deterministic multi-player game).
ROSE values replace Competition-Cooperation ones by having players not compete against each other in attempts to extract more utility but average their payoffs over possible initiative orders. A probable social consequence is noted, that people wouldn’t threaten everyone else in order to get something they want but would rather maximize own utility (improve their situation themselves).
ROSE values are resistant to unconditional threats. Unfortunately, conditional ones can’t be easily distinguished from conditional bonuses (if player B decides to pay A if A chooses some action from a certain set) so counteracting that requires further research. There are at least two more important directions of research: non-deterministic and imperfect-information games.
In comments, a problem is mentioned: what happens if there are multiple ROSE equilibrium points? I don’t believe solution “bargain over those points only” will work, as it’s possible all of those points will remain equilibriums when calculating ROSE values again. Hopefully, this players disagreement will involve only tiny slices of utility and not matter much overall.