Of the examples given, some of them certainly involve controled experiments in the classical sense. Evolutionary biology for example involves tests of genetic drift and speciation in the lab environment. For example, one matter that has been extensively tested in labs is different speciation mechanisms. The founder-effect mechanism is one that is particularly easy to test in a lab. For one major paper on the subject see this paper. A much older example is speciation by hybridization which has been tested in controlled lab environments for about a century now. The oldest I’m aware of in that regard is a 1912 paper by Digby (I haven’t read it, and I’d have to go look up the citation but it shouldn’t be hard to find ), and there have been many papers since then on the same topic.
Edit:Citation for Digby according to TOA is Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.
All the sciences mentioned above definitely do rely on controlled experimentation. But their central empirical questions are not amenable to being directly studied by controlled experimentation. We don’t have multiple earths or natural histories upon which we can draw inference about the origins of species.
There is a world of difference between saying “I have observed speciation under these laboratory conditions” and “speciation explains observed biodiversity”. These are distinct types of inferences. This of course does not mean that people who perform inference on natural history don’t use controlled experiments: indeed they should draw on as much knowledge as possible about the mechanisms of the world in order to construct plausible theories of the past: but they can’t run the world multiple times under different conditions to test their theories of the past in the way that we can test speciation.
Of the examples given, some of them certainly involve controled experiments in the classical sense. Evolutionary biology for example involves tests of genetic drift and speciation in the lab environment. For example, one matter that has been extensively tested in labs is different speciation mechanisms. The founder-effect mechanism is one that is particularly easy to test in a lab. For one major paper on the subject see this paper. A much older example is speciation by hybridization which has been tested in controlled lab environments for about a century now. The oldest I’m aware of in that regard is a 1912 paper by Digby (I haven’t read it, and I’d have to go look up the citation but it shouldn’t be hard to find ), and there have been many papers since then on the same topic.
Edit:Citation for Digby according to TOA is Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.
All the sciences mentioned above definitely do rely on controlled experimentation. But their central empirical questions are not amenable to being directly studied by controlled experimentation. We don’t have multiple earths or natural histories upon which we can draw inference about the origins of species.
There is a world of difference between saying “I have observed speciation under these laboratory conditions” and “speciation explains observed biodiversity”. These are distinct types of inferences. This of course does not mean that people who perform inference on natural history don’t use controlled experiments: indeed they should draw on as much knowledge as possible about the mechanisms of the world in order to construct plausible theories of the past: but they can’t run the world multiple times under different conditions to test their theories of the past in the way that we can test speciation.