The actual theory, equation and everything is [...]
That’s not the actual theory. It’s a tiny fraction of a theory. It’s not even clear that it makes sense. (What exactly is d here? Total distance travelled by the photon since it first came into being, I guess. But what exactly does that mean? For instance, can there be interference between two photons with different values of d, and if so what happens?)
In your theory, photons travel slower than c, the exact speed depending on their “d” value. That’s going to mess up pretty much everything in quantum electrodynamics, so what do you put in its place?
In your theory, photons pop out of existence when their velocity and frequency reach zero. Again, that violates local conservation of energy and CPT invariance and so forth; again, how are you modifying the fundamentals of conventional physics to deal with this?
That’s not the actual theory. It’s a tiny fraction of a theory. It’s not even clear that it makes sense. (What exactly is d here? Total distance travelled by the photon since it first came into being, I guess. But what exactly does that mean? For instance, can there be interference between two photons with different values of d, and if so what happens?)
In your theory, photons travel slower than c, the exact speed depending on their “d” value. That’s going to mess up pretty much everything in quantum electrodynamics, so what do you put in its place?
In your theory, photons pop out of existence when their velocity and frequency reach zero. Again, that violates local conservation of energy and CPT invariance and so forth; again, how are you modifying the fundamentals of conventional physics to deal with this?