Re: smooth vs bumpy capabilities, I agree that capabilities sometimes emerge abruptly and unexpectedly. Still, iterative deployment with gradually increasing stakes is much safer than deploying a model to do something totally unprecedented and high-stakes. There are multiple ways to make deployment more conservative and gradual. (E.g., incrementally increase the amount of work the AI is allowed to do without close supervision, incrementally increase the amount of KL-divergence between the new policy and a known-to-be-safe policy.)
Re: ontological collapse, there are definitely some tricky issues here, but the problem might not be so bad with the current paradigm, where you start with a pretrained model (which doesn’t really have goals and isn’t good at long-horizon control), and fine-tune it (which makes it better at goal-directed behavior). In this case, most of the concepts are learned during the pretraining phase, not the fine-tuning phase where it learns goal-directed behavior.
Still, iterative deployment with gradually increasing stakes is much safer than deploying a model to do something totally unprecedented and high-stakes.
I agree with the “X is safer than Y” claim; I am uncertain whether it’s practically available to us, and much more worried in worlds where it isn’t available.
incrementally increase the amount of KL-divergence between the new policy and a known-to-be-safe policy
For this specific proposal, when I reframe it as “give the system a KL-divergence budget to spend on each change to its policy” I worry that it works against a stochastic attacker but not an optimizing attacker; it may be the case that every known-to-be-safe policy has some unsafe policy within a reasonable KL-divergence of it, because the danger can be localized in changes to some small part of the overall policy-space.
the problem might not be so bad with the current paradigm, where you start with a pretrained model (which doesn’t really have goals and isn’t good at long-horizon control), and fine-tune it (which makes it better at goal-directed behavior). In this case, most of the concepts are learned during the pretraining phase, not the fine-tuning phase where it learns goal-directed behavior.
Yeah, I agree that this seems pretty good. I do naively guess that when you do the fine-tuning, it’s the concepts that are most related to the goals who change the most (as they have the most gradient pressure on them); it’d be nice to know how much this is the case, vs. most of the relevant concepts being durable parts of the environment that were already very important for goal-free prediction.
Re: smooth vs bumpy capabilities, I agree that capabilities sometimes emerge abruptly and unexpectedly. Still, iterative deployment with gradually increasing stakes is much safer than deploying a model to do something totally unprecedented and high-stakes. There are multiple ways to make deployment more conservative and gradual. (E.g., incrementally increase the amount of work the AI is allowed to do without close supervision, incrementally increase the amount of KL-divergence between the new policy and a known-to-be-safe policy.)
Re: ontological collapse, there are definitely some tricky issues here, but the problem might not be so bad with the current paradigm, where you start with a pretrained model (which doesn’t really have goals and isn’t good at long-horizon control), and fine-tune it (which makes it better at goal-directed behavior). In this case, most of the concepts are learned during the pretraining phase, not the fine-tuning phase where it learns goal-directed behavior.
I agree with the “X is safer than Y” claim; I am uncertain whether it’s practically available to us, and much more worried in worlds where it isn’t available.
For this specific proposal, when I reframe it as “give the system a KL-divergence budget to spend on each change to its policy” I worry that it works against a stochastic attacker but not an optimizing attacker; it may be the case that every known-to-be-safe policy has some unsafe policy within a reasonable KL-divergence of it, because the danger can be localized in changes to some small part of the overall policy-space.
Yeah, I agree that this seems pretty good. I do naively guess that when you do the fine-tuning, it’s the concepts that are most related to the goals who change the most (as they have the most gradient pressure on them); it’d be nice to know how much this is the case, vs. most of the relevant concepts being durable parts of the environment that were already very important for goal-free prediction.