In that case, I believe your conjecture is trivially true, but has nothing to do with human intelligence or Bengio’s statements. In context, he is explicitly discussing low dimensional representations of extremely high dimensional data, and the things human brains learn to do automatically (I would say analogously to a single forward pass).
If you want to make it a fair fight, you either need to demonstrate a human who learns to recognize primes without any experience of the physical world (please don’t do this) or allow an ML model something more analogous to the data humans actually receive, which includes math instruction, interacting with the world, many brain cycles, etc
Regarding your remark on finding low-dimensional representations, I have added a section on physical intuitions for the challenge. Here I explain how the prime recognition problem corresponds to reliably finding a low-dimensional representation of high-dimensional data.
In that case, I believe your conjecture is trivially true, but has nothing to do with human intelligence or Bengio’s statements. In context, he is explicitly discussing low dimensional representations of extremely high dimensional data, and the things human brains learn to do automatically (I would say analogously to a single forward pass).
If you want to make it a fair fight, you either need to demonstrate a human who learns to recognize primes without any experience of the physical world (please don’t do this) or allow an ML model something more analogous to the data humans actually receive, which includes math instruction, interacting with the world, many brain cycles, etc
I also believe my conjecture is true, however non-trivially. At least, mathematically non-trivially. Otherwise, all is trivial when the job is done.
I also believe my conjecture is true, however non-trivially. At least, mathematically non-trivially. Otherwise, all is trivial while the job is done.
Regarding your remark on finding low-dimensional representations, I have added a section on physical intuitions for the challenge. Here I explain how the prime recognition problem corresponds to reliably finding a low-dimensional representation of high-dimensional data.