Critch, I agree it’s easy for most people to understand the case for AI being risky. I think the core argument for concern—that it seems plausibly unsafe to build something far smarter than us—is simple and intuitive, and personally, that simple argument in fact motivates a plurality of my concern. That said:
I think it often takes weirder, less intuitive arguments to address many common objections—e.g., that this seems unlikely to happen within our lifetimes, that intelligence far superior to ours doesn’t even seem possible, that we’re safe because software can’t affect physical reality, that this risk doesn’t seem more pressing than other risks, that alignment seems easy to solve if we just x, etc.
It’s also remarkably easy to convince many people that aliens visit Earth on a regular basis, that the theory of evolution via natural selection is bunk, that lottery tickets are worth buying, etc. So while I definitely think some who engage with these arguments come away having good reason to believe the threat is likely, for values of “good” and “believe” and “likely” at least roughly similar those common around here, I suspect most update something more like their professed belief-in-belief, than their real expectations—and that even many who do update their real expectations do so via symmetric arguments that leave them with poor models of the threat.
These factors make me nervous about strategies that rely heavily on convincing everyday people, or people in government, to care about AI risk, for reasons I don’t think are well described as “systematically discounting their opinions/agency.” Personally, I’ve engaged a lot with people working in various corners of politics and government, and decently much with academics, and I respect and admire many of them, including in ways I rarely admire rationalists or EA’s.
(For example, by my lights, the best ops teams in government are much more competent than the best ops teams around here; the best policy wonks, lawyers, and economists are genuinely really quite smart, and have domain expertise few R/EA’s have without which it’s hard to cause many sorts of plausibly-relevant societal change; perhaps most spicily, I think academics affiliated with the Santa Fe Institute have probably made around as much progress on the alignment problem so far as alignment researchers, without even trying to, and despite being (imo) deeply epistemically confused in a variety of relevant ways).
But there are also a number of respects in which I think rationalists and EA’s tend to far outperform any other group I’m aware of—for example, in having beliefs that actually reflect their expectations, trying seriously to make sure those beliefs are true, being open to changing their mind, thinking probabilistically, “actually trying” to achieve their goals as a behavior distinct from “trying their best,” etc. My bullishness about these traits is why e.g. I live and work around here, and read this website.
And on the whole, I am bullish about this culture. But it’s mostly the relative scarcity of these and similar traits in particular, not my overall level of enthusiasm or respect for other groups, that causes me to worry they wouldn’t take helpful actions if persuaded of AI risk.
My impression is that it’s unusually difficult to figure out how to take actions that reduce AI risk without substantial epistemic skill of a sort people sometimes have around here, but only rarely have elsewhere. On my models, this is mostly because:
There are many more ways to make the situation worse than better;
A number of key considerations are super weird and/or terrifying, such that it’s unusually hard to reason well about them;
It seems easier for people to grok the potential importance of transformative AI, than the potential danger.
My strong prior is that, to accomplish large-scale societal change, you nearly always need to collaborate with people who disagree with you, even about critical points. And I’m sympathetic to the view that this is true here, too; I think some of it probably is. But I think the above features make this more fraught than usual, in a way that makes it easy for people who grok the (simpler) core argument for concern, but not some of the (typically more complex) ancillary considerations, to accidentally end up making the situation even worse.
Here are some examples of (what seem to me like) this happening:
The closest thing I’m aware of to an official US government position on AI risk is described in the 2016 and 2017 National Science and Technology Council reports. I haven’t read all of them, but the parts I have read struck me as a strange mix of claims like “maybe this will be a big deal, like mobile phones were,” and “maybe this will be a big deal, in the sense that life on Earth will cease to exist.” And like, I can definitely imagine explanations for this that don’t much involve the authors misjudging the situation—maybe their aim was more to survey experts than describe their own views, or maybe they were intentionally underplaying the threat for fear of starting an arms race, etc. But I think my lead hypothesis is more that the authors just didn’t actually, viscerally consider that the sentences they were writing might be true, in the sense of describing a reality they might soon inhabit.
I think rationalists and EA’s tend to make this sort of mistake less often, since the “taking beliefs seriously”-style epistemic orientation common around here has the effect of making it easier for people to viscerally grasp that trend lines on graphs and so forth might actually reflect reality. (Like, one frame on EA as a whole, is “an exercise in avoiding the ‘learning about the death of a million feels like a statistic, not a tragedy’ error”). And this makes me at least somewhat more confident they won’t do dumb things upon becoming worried about AI risk, since without this epistemic skill, I think it’s easier to make critical errors like overestimating how much time we have, or underestimating the magnitude or strangeness of the threat.
As I understand it, OpenAI is named what it is because, at least at first, its founders literally hoped to make AGI open source. (Elon Musk: “I think the best defense against the misuse of AI is to empower as many people as possible to have AI. If everyone has AI powers, then there’s not any one person or a small set of individuals who can have AI superpower.”)
By my lights, there are unfortunately a lot of examples of rationalists and EA’s making big mistakes while attempting to reduce AI risk. But it’s at least… hard for me to imagine most of them making this one? Maybe I’m being insufficiently charitable here, but from my perspective, this just fails a really basic “wait, but then what happens next?” sanity check, that I think should have occurred to them more or less immediately, and that I suspect would have to most rationalists and EA’s.
For me, the most striking aspect of the AI Impacts poll, was that all those ML researchers who reported thinking ML had a substantial chance of killing everyone, still research ML. I’m not sure why they do this; I’d guess some of them are convinced for some reason or another that working on it still makes sense, even given that. But my perhaps-uncharitable guess is that most of them actually don’t—that they don’t even have arguments which feel compelling to them that justify their actions, but that they for some reason press on anyway. This too strikes me as a sort of error R/EA’s are less likely to make.
(When Bostrom asked Geoffrey Hinton why he still worked on AI, if he thought governments would likely use it to terrorize people, he replied, “I could give you the usual arguments, but the truth is that the prospect of discovery is too sweet”).
Sam Altman recently suggested, on the topic of whether to slow down AI, that “either we figure out how to make AGI go well or we wait for the asteroid to hit.”
Maybe he was joking, or meant “asteroid” as a stand-in for all potentially civilization-ending threats, or something? But that’s not my guess, because his follow-up comment is about how we need AGI to colonize space, which makes me suspect he actually considers asteroid risk in particular a relevant consideration for deciding when to deploy advanced AI. Which if true, strikes me as… well, more confused than any comment in this thread strikes me. And it seems like the kind of error that might, for example, cause someone to start an org with the hope of reducing existential risk, that mostly just ends up exacerbating it.
Obviously our social network doesn’t have a monopoly on good reasoning, intelligence, or competence, and lord knows it has plenty of its own pathologies. But as I understand it, most of the reason the rationality project exists is to help people reason more clearly about the strange, horrifying problem of AI risk. And I do think it has succeeded to some degree, such that empirically, people with less exposure to this epistemic environment far more often take actions which seem terribly harmful to me.
the best ops teams in government are much more competent than the best ops teams around here;
This is a candidate for the most surprising sentence in the whole comments section! I’d be interested in knowing more about why you believe this. One sort of thing I’d be quite interested in is things you’ve seen government ops teams do fast(even if they’re small things, accomplishments that would surprise many of us in this thread that they could be done so quickly).
Recruitment—in my experience often a weeks long process from start to finish, well oiled and systematic and using all the tips from the handbook on organizational behaviour on selection, often with feedback given too. By comparison, some tech companies can take several months to hire, with lots of ad hoc decision-making, no processes around biases or conflicts of interest, and no feedback.
Happy to give more examples if you want by DM.
I should say my sample size is tiny here—I know one gov dept in depth, one tech company in depth and a handful of other tech companies and gov depts not fully from the inside but just from talking with friends that work there, etc.
I think academics affiliated with the Santa Fe Institute have probably made around as much progress on the alignment problem so far as alignment researchers, without even trying to, and despite being (imo) deeply epistemically confused in a variety of relevant-seeming ways).
This is an important optimistic update, because it implies alignment might be quite easier than we think, given that even under unfavorable circumstances, reasonable progress still gets done.
For me, the most striking aspect of the AI Impacts poll, was that all those ML researchers who reported thinking ML had a substantial chance of someday killing everyone, still research ML. I’m not sure what’s going on with them; I’d guess some of them buy arguments such that their continued work still makes sense somehow, even given that. But my perhaps-uncharitable guess is that most of them don’t—that they don’t even have arguments which feel compelling to them that justify their actions, but that they for some reason press on anyway. This too strikes me as a sort of error R/EA’s are less likely to make.
I think that this isn’t an error in rationality, and instead very different goals drive EAs/LWers compared to AI researchers. A low chance of high utility and a high chance of death is pretty rational to take, assuming you only care about yourself. And this is the default, absent additional assumptions.
From an altruistic perspective, it’s insane to take this risk, especially if you care about the future.
Critch, I agree it’s easy for most people to understand the case for AI being risky. I think the core argument for concern—that it seems plausibly unsafe to build something far smarter than us—is simple and intuitive, and personally, that simple argument in fact motivates a plurality of my concern. That said:
I think it often takes weirder, less intuitive arguments to address many common objections—e.g., that this seems unlikely to happen within our lifetimes, that intelligence far superior to ours doesn’t even seem possible, that we’re safe because software can’t affect physical reality, that this risk doesn’t seem more pressing than other risks, that alignment seems easy to solve if we just x, etc.
It’s also remarkably easy to convince many people that aliens visit Earth on a regular basis, that the theory of evolution via natural selection is bunk, that lottery tickets are worth buying, etc. So while I definitely think some who engage with these arguments come away having good reason to believe the threat is likely, for values of “good” and “believe” and “likely” at least roughly similar those common around here, I suspect most update something more like their professed belief-in-belief, than their real expectations—and that even many who do update their real expectations do so via symmetric arguments that leave them with poor models of the threat.
These factors make me nervous about strategies that rely heavily on convincing everyday people, or people in government, to care about AI risk, for reasons I don’t think are well described as “systematically discounting their opinions/agency.” Personally, I’ve engaged a lot with people working in various corners of politics and government, and decently much with academics, and I respect and admire many of them, including in ways I rarely admire rationalists or EA’s.
(For example, by my lights, the best ops teams in government are much more competent than the best ops teams around here; the best policy wonks, lawyers, and economists are genuinely really quite smart, and have domain expertise few R/EA’s have without which it’s hard to cause many sorts of plausibly-relevant societal change; perhaps most spicily, I think academics affiliated with the Santa Fe Institute have probably made around as much progress on the alignment problem so far as alignment researchers, without even trying to, and despite being (imo) deeply epistemically confused in a variety of relevant ways).
But there are also a number of respects in which I think rationalists and EA’s tend to far outperform any other group I’m aware of—for example, in having beliefs that actually reflect their expectations, trying seriously to make sure those beliefs are true, being open to changing their mind, thinking probabilistically, “actually trying” to achieve their goals as a behavior distinct from “trying their best,” etc. My bullishness about these traits is why e.g. I live and work around here, and read this website.
And on the whole, I am bullish about this culture. But it’s mostly the relative scarcity of these and similar traits in particular, not my overall level of enthusiasm or respect for other groups, that causes me to worry they wouldn’t take helpful actions if persuaded of AI risk.
My impression is that it’s unusually difficult to figure out how to take actions that reduce AI risk without substantial epistemic skill of a sort people sometimes have around here, but only rarely have elsewhere. On my models, this is mostly because:
There are many more ways to make the situation worse than better;
A number of key considerations are super weird and/or terrifying, such that it’s unusually hard to reason well about them;
It seems easier for people to grok the potential importance of transformative AI, than the potential danger.
My strong prior is that, to accomplish large-scale societal change, you nearly always need to collaborate with people who disagree with you, even about critical points. And I’m sympathetic to the view that this is true here, too; I think some of it probably is. But I think the above features make this more fraught than usual, in a way that makes it easy for people who grok the (simpler) core argument for concern, but not some of the (typically more complex) ancillary considerations, to accidentally end up making the situation even worse.
Here are some examples of (what seem to me like) this happening:
The closest thing I’m aware of to an official US government position on AI risk is described in the 2016 and 2017 National Science and Technology Council reports. I haven’t read all of them, but the parts I have read struck me as a strange mix of claims like “maybe this will be a big deal, like mobile phones were,” and “maybe this will be a big deal, in the sense that life on Earth will cease to exist.” And like, I can definitely imagine explanations for this that don’t much involve the authors misjudging the situation—maybe their aim was more to survey experts than describe their own views, or maybe they were intentionally underplaying the threat for fear of starting an arms race, etc. But I think my lead hypothesis is more that the authors just didn’t actually, viscerally consider that the sentences they were writing might be true, in the sense of describing a reality they might soon inhabit.
I think rationalists and EA’s tend to make this sort of mistake less often, since the “taking beliefs seriously”-style epistemic orientation common around here has the effect of making it easier for people to viscerally grasp that trend lines on graphs and so forth might actually reflect reality. (Like, one frame on EA as a whole, is “an exercise in avoiding the ‘learning about the death of a million feels like a statistic, not a tragedy’ error”). And this makes me at least somewhat more confident they won’t do dumb things upon becoming worried about AI risk, since without this epistemic skill, I think it’s easier to make critical errors like overestimating how much time we have, or underestimating the magnitude or strangeness of the threat.
As I understand it, OpenAI is named what it is because, at least at first, its founders literally hoped to make AGI open source. (Elon Musk: “I think the best defense against the misuse of AI is to empower as many people as possible to have AI. If everyone has AI powers, then there’s not any one person or a small set of individuals who can have AI superpower.”)
By my lights, there are unfortunately a lot of examples of rationalists and EA’s making big mistakes while attempting to reduce AI risk. But it’s at least… hard for me to imagine most of them making this one? Maybe I’m being insufficiently charitable here, but from my perspective, this just fails a really basic “wait, but then what happens next?” sanity check, that I think should have occurred to them more or less immediately, and that I suspect would have to most rationalists and EA’s.
For me, the most striking aspect of the AI Impacts poll, was that all those ML researchers who reported thinking ML had a substantial chance of killing everyone, still research ML. I’m not sure why they do this; I’d guess some of them are convinced for some reason or another that working on it still makes sense, even given that. But my perhaps-uncharitable guess is that most of them actually don’t—that they don’t even have arguments which feel compelling to them that justify their actions, but that they for some reason press on anyway. This too strikes me as a sort of error R/EA’s are less likely to make.
(When Bostrom asked Geoffrey Hinton why he still worked on AI, if he thought governments would likely use it to terrorize people, he replied, “I could give you the usual arguments, but the truth is that the prospect of discovery is too sweet”).
Sam Altman recently suggested, on the topic of whether to slow down AI, that “either we figure out how to make AGI go well or we wait for the asteroid to hit.”
Maybe he was joking, or meant “asteroid” as a stand-in for all potentially civilization-ending threats, or something? But that’s not my guess, because his follow-up comment is about how we need AGI to colonize space, which makes me suspect he actually considers asteroid risk in particular a relevant consideration for deciding when to deploy advanced AI. Which if true, strikes me as… well, more confused than any comment in this thread strikes me. And it seems like the kind of error that might, for example, cause someone to start an org with the hope of reducing existential risk, that mostly just ends up exacerbating it.
Obviously our social network doesn’t have a monopoly on good reasoning, intelligence, or competence, and lord knows it has plenty of its own pathologies. But as I understand it, most of the reason the rationality project exists is to help people reason more clearly about the strange, horrifying problem of AI risk. And I do think it has succeeded to some degree, such that empirically, people with less exposure to this epistemic environment far more often take actions which seem terribly harmful to me.
This is a candidate for the most surprising sentence in the whole comments section! I’d be interested in knowing more about why you believe this. One sort of thing I’d be quite interested in is things you’ve seen government ops teams do fast (even if they’re small things, accomplishments that would surprise many of us in this thread that they could be done so quickly).
Recruitment—in my experience often a weeks long process from start to finish, well oiled and systematic and using all the tips from the handbook on organizational behaviour on selection, often with feedback given too. By comparison, some tech companies can take several months to hire, with lots of ad hoc decision-making, no processes around biases or conflicts of interest, and no feedback.
Happy to give more examples if you want by DM.
I should say my sample size is tiny here—I know one gov dept in depth, one tech company in depth and a handful of other tech companies and gov depts not fully from the inside but just from talking with friends that work there, etc.
This is an important optimistic update, because it implies alignment might be quite easier than we think, given that even under unfavorable circumstances, reasonable progress still gets done.
I think that this isn’t an error in rationality, and instead very different goals drive EAs/LWers compared to AI researchers. A low chance of high utility and a high chance of death is pretty rational to take, assuming you only care about yourself. And this is the default, absent additional assumptions.
From an altruistic perspective, it’s insane to take this risk, especially if you care about the future.
Thus, differing goals are at play.