I think, depending on how unlikely a world with anybody finding such an unlikely chain of throws is, and how his/her priors look, the gambler might want to update to almost certainty on quantum realism or one of the tegmarks; ie. the fundamental improbability of a finite world containing this outcome implies that reality is such that such an observation can be expected.
At least if I’m not completely confused. Wait, is that what the “unloaded gun” was supposed to emulate? But then it comes down to whether you’re optimizing over total universes or surviving universes—if you don’t care about the branches where you die, the game is neutral to you (if you’re certain you’re in a quantum realism universe) - you can play, you can leave, it makes no difference. The probability number would be irrelevant to your decisionmaking. I suppose this is one reason we should expect quantum immortality as a philosophy to weed itself out of the observable universe.
If you look back at 1000 heads in a quantum immortality mode where you ignore dead branches, you have an anticipation of 0.5 (initial throw) of observing that series in the loaded universe, but only 0.5/2^1000 in the unloaded universe, so the strategy “after turn 1000, if you got 1000 heads, assume you’re in the loaded half” will succeed in 0.5/total anticipated cases and fail in (0.5/2^1000)/total anticipated cases. But then again, in a quantum immortality mode, the entire game is irrelevant and you can quit or play however you like. So this is somewhat confusing to me. Excuse me for rambling.
I am confused.
I think, depending on how unlikely a world with anybody finding such an unlikely chain of throws is, and how his/her priors look, the gambler might want to update to almost certainty on quantum realism or one of the tegmarks; ie. the fundamental improbability of a finite world containing this outcome implies that reality is such that such an observation can be expected.
At least if I’m not completely confused. Wait, is that what the “unloaded gun” was supposed to emulate? But then it comes down to whether you’re optimizing over total universes or surviving universes—if you don’t care about the branches where you die, the game is neutral to you (if you’re certain you’re in a quantum realism universe) - you can play, you can leave, it makes no difference. The probability number would be irrelevant to your decisionmaking. I suppose this is one reason we should expect quantum immortality as a philosophy to weed itself out of the observable universe.
If you look back at 1000 heads in a quantum immortality mode where you ignore dead branches, you have an anticipation of 0.5 (initial throw) of observing that series in the loaded universe, but only 0.5/2^1000 in the unloaded universe, so the strategy “after turn 1000, if you got 1000 heads, assume you’re in the loaded half” will succeed in 0.5/total anticipated cases and fail in (0.5/2^1000)/total anticipated cases. But then again, in a quantum immortality mode, the entire game is irrelevant and you can quit or play however you like. So this is somewhat confusing to me. Excuse me for rambling.