Here’ s a brainstorm of some possible forecasting metrics which might go in those tables (probably I’m reinventing some wheels here; I know more about existing metrics for sports than for forecasting):
Leading Indicator: get credit for making predictions if the consensus then moves in the same direction over the next hours / days / n predictions (alternate version: only if that movement winds up being towards the true outcome)
Points Relative to Your Expectation: each forecast has an expected score according to that forecast (e.g., if the consensus is 60% and you say 80%, you think there’s a 0.8 chance you’ll gain points for doing better than the consensus and a 0.2 chance you’ll lose points for doing worse than consensus). Report expected score alongside actual score, or report the ratio actual/expected. If that ratio is > 1, that means you’ve been underconfident or (more likely) lucky. Also, expected score is similar to “total number of forecasts”, weighted by boldness of forecasts. You could also have a column for the consensus expected score (in the example: your expected score if there was only a 0.6 chance you’d gain points and a 0.4 chance you’d lose points).
Marginal Contribution to Collective Forecast: have some way of calculating the overall collective forecast on each question (which could be just a simple average, or could involve fancier stuff to try to make it more accurate including putting more weight on some people’s forecasts than others). Also calculate what the overall collective forecast would have been if you’d been absent from that question. You get credit for the size of the difference between those two numbers. (Alternative versions: you only get credit if you moved the collective forecast in the right direction, or you get negative credit if you moved it in the wrong direction.)
Trailblazer Score: use whichever forecasting accuracy metric (e.g. brier score relative to consensus) while only including cases where a person’s forecast differed from the consensus at the time by at least X amount. Relevant in part because there might be different skillsets to noticing that the consensus seems off and adjusting a bit in the right direction vs. coming up with your own forecast and trusting it even if it’s not close to consensus. (And the latter skillset might be relevant if you’re making forecasts on your own without the benefit of having a platform consensus to start from.)
Market Mover: find some way to track which comments lead to people changing their forecasts. Credit those commenters based on how much they moved the market. (alternative version: only if it moved towards truth)
Pseudoprofit: find some way to transform people’s predictions into hypothetical bets against each other (or against the house), track each person’s total profit & total amount “bet”. (I’m not sure if this to different calculations or if it’s just a different gloss on the same calculations.)
Splits: tag each question, and each forecast, with various features. Tags by topic (coronavirus, elections, technology, etc.), by what sort of event it’s about (e.g. will people accomplish a thing they’re trying to do), by amount of activity on the question, by time till event (short term vs. medium term vs. long term markets), by whether the question is binary or continuous, by whether the forecast was placed early vs. middle vs. late in the duration of the question, etc. Be able to show each scoring table only for the subset of forecasts that fit a particular tag.
Predicted Future Rating: On any metric, you can set up formulas to predict what people will score on that metric over the next (period of time / set of markets). A simple way to do that is to just predict future scores on that metric based on past scores on the same metric, with some regression towards the mean, using historical data to estimate the relationship. But there are also more complicated things using past performance on some metrics (especially less noisy ones) to help predict future performance on other metrics. And also analyses to check whether patterns in past data are mostly signal or noise (e.g. if a person appears to have improved over time, or if they have interesting splits). (Finding a way to predict future scores is a good way to come up with a comprehensive metric, since it involves finding an underlying skill from among the noise. And the analyses can also provide information about how important different metrics are, which ones to include in the big table, which ones to make more prominent.)
Here’ s a brainstorm of some possible forecasting metrics which might go in those tables (probably I’m reinventing some wheels here; I know more about existing metrics for sports than for forecasting):
Leading Indicator: get credit for making predictions if the consensus then moves in the same direction over the next hours / days / n predictions (alternate version: only if that movement winds up being towards the true outcome)
Points Relative to Your Expectation: each forecast has an expected score according to that forecast (e.g., if the consensus is 60% and you say 80%, you think there’s a 0.8 chance you’ll gain points for doing better than the consensus and a 0.2 chance you’ll lose points for doing worse than consensus). Report expected score alongside actual score, or report the ratio actual/expected. If that ratio is > 1, that means you’ve been underconfident or (more likely) lucky. Also, expected score is similar to “total number of forecasts”, weighted by boldness of forecasts. You could also have a column for the consensus expected score (in the example: your expected score if there was only a 0.6 chance you’d gain points and a 0.4 chance you’d lose points).
Marginal Contribution to Collective Forecast: have some way of calculating the overall collective forecast on each question (which could be just a simple average, or could involve fancier stuff to try to make it more accurate including putting more weight on some people’s forecasts than others). Also calculate what the overall collective forecast would have been if you’d been absent from that question. You get credit for the size of the difference between those two numbers. (Alternative versions: you only get credit if you moved the collective forecast in the right direction, or you get negative credit if you moved it in the wrong direction.)
Trailblazer Score: use whichever forecasting accuracy metric (e.g. brier score relative to consensus) while only including cases where a person’s forecast differed from the consensus at the time by at least X amount. Relevant in part because there might be different skillsets to noticing that the consensus seems off and adjusting a bit in the right direction vs. coming up with your own forecast and trusting it even if it’s not close to consensus. (And the latter skillset might be relevant if you’re making forecasts on your own without the benefit of having a platform consensus to start from.)
Market Mover: find some way to track which comments lead to people changing their forecasts. Credit those commenters based on how much they moved the market. (alternative version: only if it moved towards truth)
Pseudoprofit: find some way to transform people’s predictions into hypothetical bets against each other (or against the house), track each person’s total profit & total amount “bet”. (I’m not sure if this to different calculations or if it’s just a different gloss on the same calculations.)
Splits: tag each question, and each forecast, with various features. Tags by topic (coronavirus, elections, technology, etc.), by what sort of event it’s about (e.g. will people accomplish a thing they’re trying to do), by amount of activity on the question, by time till event (short term vs. medium term vs. long term markets), by whether the question is binary or continuous, by whether the forecast was placed early vs. middle vs. late in the duration of the question, etc. Be able to show each scoring table only for the subset of forecasts that fit a particular tag.
Predicted Future Rating: On any metric, you can set up formulas to predict what people will score on that metric over the next (period of time / set of markets). A simple way to do that is to just predict future scores on that metric based on past scores on the same metric, with some regression towards the mean, using historical data to estimate the relationship. But there are also more complicated things using past performance on some metrics (especially less noisy ones) to help predict future performance on other metrics. And also analyses to check whether patterns in past data are mostly signal or noise (e.g. if a person appears to have improved over time, or if they have interesting splits). (Finding a way to predict future scores is a good way to come up with a comprehensive metric, since it involves finding an underlying skill from among the noise. And the analyses can also provide information about how important different metrics are, which ones to include in the big table, which ones to make more prominent.)
Cheers, thanks! These are great