Do you have any evidence or argument to support your contention that disputes about whether (e.g.) real numbers, infinite sets, tables, electrons, symphonies, and justice, “exist” are best regarded as disputes about those things rather than about existence? Here, it seems that you’ve just asserted it repeatedly (in a way that, for me, pattern-matches to “not really as confident about this as s/he makes out”).
I agree with shminux that, given the extent to which people at least think they disagree about what “existence” means and how it works, blithely describing it as “unproblematic” seems overoptimistic.
The argument against infinity that you sketch here sounds to me like utter nonsense. First you say it’s “conceptually possible” that some things are distinguishable only by the fact of being different things. (Maybe so, though I’m not convinced and you offer no actual reason for thinking so.) Then you apparently go on to assume that if there are infinite sets then there are infinite sets of “brutely distinguishable” things (by no means obvious; perhaps some kinds of things can be collected into infinite sets and some can’t), and that two sets of “brutely distinguishable things” can’t be distinguished except by their cardinality (why? why can’t they be distinguished by being brutely different things themselves?). And then you say this implies that any two such sets of equal cardinality are in fact the same thing, which makes absolutely no sense at all in conjunction with the proposal that some things are distinguishable by the fact of being different things and by nothing else.
The following paragraph (“we are able to distinguish points that exist from those that don’t exist”) also seems nonsensical. There are no points that don’t exist; that’s what “don’t exist” means. There might be apparent-descriptions-of-points that turn out not to apply to any actual points, but that isn’t at all the same and doesn’t seem like it does the work you want the distinction between existent points and nonexistent points to do.
Having dismissed the idea that questions like “do numbers exist?” are questions about existence rather than about numbers, it seems very odd that you then say “If finitude is a condition for existence, we’ve learned something new about the concept of existence”. Why isn’t it just finitude and infinitude about which we’ve allegedly learned something, just as you claim that learning that numbers do or don’t exist would be learning something about numbers and not about existence itself?
The last paragraph seems rather close to word salad to me.
Presumably there’s some reason why you’re posting this stuff—you’re working up to some big general theory, or you think many people are terribly confused about existence (though I don’t know how you’d reconcile that with calling it “so unproblematic”), or something. Would you care to say a bit about the bigger picture this is meant to contribute to?
I’m afraid this all seems terribly confused.
Do you have any evidence or argument to support your contention that disputes about whether (e.g.) real numbers, infinite sets, tables, electrons, symphonies, and justice, “exist” are best regarded as disputes about those things rather than about existence? Here, it seems that you’ve just asserted it repeatedly (in a way that, for me, pattern-matches to “not really as confident about this as s/he makes out”).
I agree with shminux that, given the extent to which people at least think they disagree about what “existence” means and how it works, blithely describing it as “unproblematic” seems overoptimistic.
The argument against infinity that you sketch here sounds to me like utter nonsense. First you say it’s “conceptually possible” that some things are distinguishable only by the fact of being different things. (Maybe so, though I’m not convinced and you offer no actual reason for thinking so.) Then you apparently go on to assume that if there are infinite sets then there are infinite sets of “brutely distinguishable” things (by no means obvious; perhaps some kinds of things can be collected into infinite sets and some can’t), and that two sets of “brutely distinguishable things” can’t be distinguished except by their cardinality (why? why can’t they be distinguished by being brutely different things themselves?). And then you say this implies that any two such sets of equal cardinality are in fact the same thing, which makes absolutely no sense at all in conjunction with the proposal that some things are distinguishable by the fact of being different things and by nothing else.
The following paragraph (“we are able to distinguish points that exist from those that don’t exist”) also seems nonsensical. There are no points that don’t exist; that’s what “don’t exist” means. There might be apparent-descriptions-of-points that turn out not to apply to any actual points, but that isn’t at all the same and doesn’t seem like it does the work you want the distinction between existent points and nonexistent points to do.
Having dismissed the idea that questions like “do numbers exist?” are questions about existence rather than about numbers, it seems very odd that you then say “If finitude is a condition for existence, we’ve learned something new about the concept of existence”. Why isn’t it just finitude and infinitude about which we’ve allegedly learned something, just as you claim that learning that numbers do or don’t exist would be learning something about numbers and not about existence itself?
The last paragraph seems rather close to word salad to me.
Presumably there’s some reason why you’re posting this stuff—you’re working up to some big general theory, or you think many people are terribly confused about existence (though I don’t know how you’d reconcile that with calling it “so unproblematic”), or something. Would you care to say a bit about the bigger picture this is meant to contribute to?