The math looks valid—I believe the content is original to Stuart_Armstrong, attempting to show a novel set of preferences which imply expected-value calculation in (suficiently) iterated cases but not in isolated cases.
Edit: For example, an agent whose decision-making criteria satisfy Stuart_Armstrong’s criteria might refuse to bet $1 for a 50% chance of winning $2.50 and 50% chance of losing his initial dollar if it were a one-off gamble, but would be willing to make 50 such bets in a row if the odds of winning each were independent. In both cases, the expected value is positive, but only in the latter case is the probable variation from the expected value small enough to overcome the risk aversion.
The math looks valid—I believe the content is original to Stuart_Armstrong, attempting to show a novel set of preferences which imply expected-value calculation in (suficiently) iterated cases but not in isolated cases.
Edit: For example, an agent whose decision-making criteria satisfy Stuart_Armstrong’s criteria might refuse to bet $1 for a 50% chance of winning $2.50 and 50% chance of losing his initial dollar if it were a one-off gamble, but would be willing to make 50 such bets in a row if the odds of winning each were independent. In both cases, the expected value is positive, but only in the latter case is the probable variation from the expected value small enough to overcome the risk aversion.