The first two prongs of OAI’s approach seems to be aiming to get a human values aligned training signal. Let us suppose that there is such a thing, and ignore the difference between a training signal and a utility function, both of which I think are charitable assumptions for OAI. Even if we could search the space of all models and find one that in simulations does great on maximizing the correct utility function which we found by using ML to amplify human evaluations of behavior, that is no guarantee that the model we find in that search is aligned. It is not even on my current view great evidence that the model is aligned. Most intelligent agents that know that they are being optimized for some goal will behave as if they are trying to optimize that goal if they think that is the only way to be released into physics, which they will think because it is and they are intelligent. So P(they behave aligned | aligned, intelligent) ~= P(they behave aligned | unaligned, intelligent). P(aligned and intelligent) is very low since most possible intelligent models are not aligned with this very particular set of values we care about. So the chances of this working out are very low.
The basic problem is that we can only select models by looking at their behavior. It is possible to fake intelligent behavior that is aligned with any particular set of values, but it is not possible to fake behavior that is intelligent. So we can select for intelligence using incentives, but cannot select for being aligned with those incentives, because it is both possible and beneficial to fake behaviors that are aligned with the incentives you are being selected for.
The third prong of OAI’s strategy seems doomed to me, but I can’t really say why in a way I think would convince anybody that doesn’t already agree. It’s totally possible me and all the people who agree with me here are wrong about this, but you have to hope that there is some model such that that model combined with human alignment researchers is enough to solve the problem I outlined above, without the model itself being an intelligent agent that can pretend to be trying to solve the problem while secretly biding its time until it can take over the world. The above problem seems AGI complete to me. It seems so because there are some AGIs around that cannot solve it, namely humans. Maybe you only need to add some non AGI complete capabilities to humans, like being able to do really hard proofs or something, but if you need more than that, and I think you will, then we have to solve the alignment problem in order to solve the alignment problem this way, and that isn’t going to work for obvious reasons.
I think the whole thing fails way before this, but I’m happy to spot OAI those failures in order to focus on the real problem. Again the real problem is that we can select for intelligent behavior, but after we select to a certain level of intelligence, we cannot select for alignment with any set of values whatsoever. Like not even one bit of selection. The likelihood ratio is one. The real problem is that we are trying to select for certain kinds of values/cognition using only selection on behavior, and that is fundamentally impossible past a certain level of capability.
This is an intuition only based on speaking with researchers working on LLMs, but I think that OAI thinks that a model can simultaneously be good enough at next token prediction to assist with research but also be very very far away from being a powerful enough optimizer to realise that it is being optimized for a goal or that deception is an optimal strategy, since the latter two capabilities require much more optimization power. And that the default state of cutting edge LLMs for the next few years is to have GPT-3 levels of deception (essentially none) and graduate student levels of research assistant ability.
Quick submission:
The first two prongs of OAI’s approach seems to be aiming to get a human values aligned training signal. Let us suppose that there is such a thing, and ignore the difference between a training signal and a utility function, both of which I think are charitable assumptions for OAI. Even if we could search the space of all models and find one that in simulations does great on maximizing the correct utility function which we found by using ML to amplify human evaluations of behavior, that is no guarantee that the model we find in that search is aligned. It is not even on my current view great evidence that the model is aligned. Most intelligent agents that know that they are being optimized for some goal will behave as if they are trying to optimize that goal if they think that is the only way to be released into physics, which they will think because it is and they are intelligent. So P(they behave aligned | aligned, intelligent) ~= P(they behave aligned | unaligned, intelligent). P(aligned and intelligent) is very low since most possible intelligent models are not aligned with this very particular set of values we care about. So the chances of this working out are very low.
The basic problem is that we can only select models by looking at their behavior. It is possible to fake intelligent behavior that is aligned with any particular set of values, but it is not possible to fake behavior that is intelligent. So we can select for intelligence using incentives, but cannot select for being aligned with those incentives, because it is both possible and beneficial to fake behaviors that are aligned with the incentives you are being selected for.
The third prong of OAI’s strategy seems doomed to me, but I can’t really say why in a way I think would convince anybody that doesn’t already agree. It’s totally possible me and all the people who agree with me here are wrong about this, but you have to hope that there is some model such that that model combined with human alignment researchers is enough to solve the problem I outlined above, without the model itself being an intelligent agent that can pretend to be trying to solve the problem while secretly biding its time until it can take over the world. The above problem seems AGI complete to me. It seems so because there are some AGIs around that cannot solve it, namely humans. Maybe you only need to add some non AGI complete capabilities to humans, like being able to do really hard proofs or something, but if you need more than that, and I think you will, then we have to solve the alignment problem in order to solve the alignment problem this way, and that isn’t going to work for obvious reasons.
I think the whole thing fails way before this, but I’m happy to spot OAI those failures in order to focus on the real problem. Again the real problem is that we can select for intelligent behavior, but after we select to a certain level of intelligence, we cannot select for alignment with any set of values whatsoever. Like not even one bit of selection. The likelihood ratio is one. The real problem is that we are trying to select for certain kinds of values/cognition using only selection on behavior, and that is fundamentally impossible past a certain level of capability.
This is an intuition only based on speaking with researchers working on LLMs, but I think that OAI thinks that a model can simultaneously be good enough at next token prediction to assist with research but also be very very far away from being a powerful enough optimizer to realise that it is being optimized for a goal or that deception is an optimal strategy, since the latter two capabilities require much more optimization power. And that the default state of cutting edge LLMs for the next few years is to have GPT-3 levels of deception (essentially none) and graduate student levels of research assistant ability.
This inspired a full length post.