There is no reason we cannot massively parallelize algorithms on silicon, it just requires more advanced computer science than most people use. Brains have a direct connect topology, silicon uses a switch fabric topology. An algorithm that parallelizes on the former may look nothing like the one that parallelizes on the later. Most computer science people never learn how to do parallelism on a switch fabric, and it is rarely taught.
Tangentially, this is why whole brain emulation on silicon is a poor way of doing things. While you can map the wetware, the algorithm implemented in the wetware probably won’t parallelize on silicon due to the fundamental topological differences.
While computer science has focused almost solely on algorithms that require a directly connected network topology to scale, there are a few organizations that know how to generally implement parallelism on switch fabrics. Most people conflate their ignorance with there being some fundamental limitation; it requires a computational model that takes the topology into account.
However, that does not address the issue of “foom”. There are other topology invariant reasons to believe it is not realistic on any kind of conventional computing substrate even if everyone was using massively parallel switch fabric algorithms.
There is no reason we cannot massively parallelize algorithms on silicon, it just requires more advanced computer science than most people use. Brains have a direct connect topology, silicon uses a switch fabric topology. An algorithm that parallelizes on the former may look nothing like the one that parallelizes on the later. Most computer science people never learn how to do parallelism on a switch fabric, and it is rarely taught.
Tangentially, this is why whole brain emulation on silicon is a poor way of doing things. While you can map the wetware, the algorithm implemented in the wetware probably won’t parallelize on silicon due to the fundamental topological differences.
While computer science has focused almost solely on algorithms that require a directly connected network topology to scale, there are a few organizations that know how to generally implement parallelism on switch fabrics. Most people conflate their ignorance with there being some fundamental limitation; it requires a computational model that takes the topology into account.
However, that does not address the issue of “foom”. There are other topology invariant reasons to believe it is not realistic on any kind of conventional computing substrate even if everyone was using massively parallel switch fabric algorithms.