I don’t think this is relevant if—as I understood from the description—the first scientist’s theory predicted experiments 11..20 with high accuracy. In this scenario, I don’t think the first scientist should have learned anything that would make them reject their previous view. This seems like an important point. (I think I understood this from Tyrrell’s comment.)
Re: Theories screen of theorists
I agree—we should pick the simpler theory—if we’re able to judge them for simplicity, and one is the clear winner. This may not be easy. (To judge General Relativity to be appropriately simple, we may have to be familiar with the discussion around symmetries in physics, not just with the formulas of GR, for example...)
I understood Tyrrell to say that both of the scientists are imperfect Bayesian reasoners, and so are we. If we were perfect Bayesians, both scientists and we would look at the data and immediately make the same prediction about the next trial. In practice, all three of us use some large blob of heuristics. Each such blob of heuristics is going to have a bias, and we want to pick the one that has the smaller expected bias. (If we formalize theories as functions from experiments to probability distributions of results, I think the “bias” would naturally be the Kullback-Leibler divergence between the theory and the true distribution.) Using Tyrrell’s argument, it seems we can show that the first scientist’s bias is likely to be smaller than the second scientist’s bias (other things being equal).
Two points I’d like to comment on.
Re: The second scientist had more information
I don’t think this is relevant if—as I understood from the description—the first scientist’s theory predicted experiments 11..20 with high accuracy. In this scenario, I don’t think the first scientist should have learned anything that would make them reject their previous view. This seems like an important point. (I think I understood this from Tyrrell’s comment.)
Re: Theories screen of theorists
I agree—we should pick the simpler theory—if we’re able to judge them for simplicity, and one is the clear winner. This may not be easy. (To judge General Relativity to be appropriately simple, we may have to be familiar with the discussion around symmetries in physics, not just with the formulas of GR, for example...)
I understood Tyrrell to say that both of the scientists are imperfect Bayesian reasoners, and so are we. If we were perfect Bayesians, both scientists and we would look at the data and immediately make the same prediction about the next trial. In practice, all three of us use some large blob of heuristics. Each such blob of heuristics is going to have a bias, and we want to pick the one that has the smaller expected bias. (If we formalize theories as functions from experiments to probability distributions of results, I think the “bias” would naturally be the Kullback-Leibler divergence between the theory and the true distribution.) Using Tyrrell’s argument, it seems we can show that the first scientist’s bias is likely to be smaller than the second scientist’s bias (other things being equal).