I like this post and am not intending to argue against its point by the following:
I read the paragraph about orders of magnitude and immediately started thinking about whether there are good counterexamples. Here are two: wires are used in lengths from nanometers to kilometers, and computer programs as a category run for times from milliseconds to weeks (even considering only those which are intended to have a finite task and not to continue running until cancelled).
Common characteristics of these two examples are that they are one-dimensional (no “square-cube law” limits scaling) and that they are arguably in some sense the most extensible solutions to their problem domains (a wire is the form that arbitrary length electrical conductors take, and most computer programs are written in Turing-complete languages).
Perhaps the caveat is merely that “some things scale freely such that the order of magnitude is no new information and you need to look at different properties of the thing”.
I like this post and am not intending to argue against its point by the following:
I read the paragraph about orders of magnitude and immediately started thinking about whether there are good counterexamples. Here are two: wires are used in lengths from nanometers to kilometers, and computer programs as a category run for times from milliseconds to weeks (even considering only those which are intended to have a finite task and not to continue running until cancelled).
Common characteristics of these two examples are that they are one-dimensional (no “square-cube law” limits scaling) and that they are arguably in some sense the most extensible solutions to their problem domains (a wire is the form that arbitrary length electrical conductors take, and most computer programs are written in Turing-complete languages).
Perhaps the caveat is merely that “some things scale freely such that the order of magnitude is no new information and you need to look at different properties of the thing”.