That sounds to me more like an argument for needing lower p-values, not higher ones. If there are many confounding factors, you need a higher threshold of evidence for claiming that you are seeing a real effect.
Physicists need low p-values for a different reason, namely that they do very large numbers of statistical tests. If you choose p=0.05 as your threshold then it means that you are going to be claiming a false detection at least one time in twenty (roughly speaking), so if physicists did this they would be claiming false detections every other day and their credibility would plummet like a rock.
That sounds to me more like an argument for needing lower p-values, not higher ones. If there are many confounding factors, you need a higher threshold of evidence for claiming that you are seeing a real effect.
Physicists need low p-values for a different reason, namely that they do very large numbers of statistical tests. If you choose p=0.05 as your threshold then it means that you are going to be claiming a false detection at least one time in twenty (roughly speaking), so if physicists did this they would be claiming false detections every other day and their credibility would plummet like a rock.