That’s an interesting thought. My hunch is that hippocampal replay can’t happen unconsciously because if the hippocampus broadcasts a memory at all, it broadcasts it broadly to the cortex including GNW. That’s just my current opinion, I’m not sure if there’s neuroscience consensus on that question.
Here I’m sneaking in an assumption that “activity in the GNW” = “activity that you’re conscious of”. Edge-cases include times when there’s stuff happening in the GNW, but it’s not remembered after the fact (at least, not as a first-person episodic memory). Are you “conscious” during a dream that you forget afterwards? Are you “conscious” when you’re ‘blacked out’ from drinking too much? I guess I’d say “yes” to both, but that’s a philosophy question, or maybe just terminology.
If we want more reasons that human-vs-EfficientZero comparisons are not straightforward, there’s also the obvious fact that humans benefit from transfer-learning whereas EfficientZero starts with random weights.
That’s an interesting thought. My hunch is that hippocampal replay can’t happen unconsciously because if the hippocampus broadcasts a memory at all, it broadcasts it broadly to the cortex including GNW. That’s just my current opinion, I’m not sure if there’s neuroscience consensus on that question.
Here I’m sneaking in an assumption that “activity in the GNW” = “activity that you’re conscious of”. Edge-cases include times when there’s stuff happening in the GNW, but it’s not remembered after the fact (at least, not as a first-person episodic memory). Are you “conscious” during a dream that you forget afterwards? Are you “conscious” when you’re ‘blacked out’ from drinking too much? I guess I’d say “yes” to both, but that’s a philosophy question, or maybe just terminology.
If we want more reasons that human-vs-EfficientZero comparisons are not straightforward, there’s also the obvious fact that humans benefit from transfer-learning whereas EfficientZero starts with random weights.
It’s EfficientZero, EfficientNet is an entirely different model architecture in computer vision.
Oops, thanks, just fixed it.